Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.2, 216-223, 2015
Wet Air Oxidation Pretreatment of Mixed Lignocellulosic Biomass to Enhance Enzymatic Convertibility
The present work explores the potential of wet air oxidation (WAO) for pretreatment of mixed lignocellulosic biomass to enhance enzymatic convertibility. Rice husk and wheat straw mixture (1:1 mass ratio) was used as a model mixed lignocellulosic biomass. Post-WAO treatment, cellulose recovery in the solid fraction was in the range of 86% to 99%, accompanied by a significant increase in enzymatic hydrolysis of cellulose present in the solid fraction. The highest enzymatic conversion efficiency, 63% (by weight), was achieved for the mixed biomass pretreated at 195 °C, 5 bar, 10 minutes compared to only 19% in the untreated biomass. The pretreatment under the aforesaid condition also facilitated 52% lignin removal and 67% hemicellulose solubilization. A statistical design of experiments on WAO process conditions was conducted to understand the effect of process parameters on pretreatment, and the predicted responses were found to be in close agreement with the experimental data. Enzymatic hydrolysis experiments with WAO liquid fraction as diluent showed favorable results with sugar enhancement up to 10.4 g L-1.
[References]
  1. Ravikumar R, Ranganathan BV, Chathoth KN, Gobikrishnan S, Korean J. Chem. Eng., 30(5), 1051, 2013
  2. Balat M, Balat H, Oz C, Prog. Energy Combust. Sci., 34, 551, 2008
  3. Gunatilake H, H India: Study on Cross-Sectoral Implications of Biofuel Production and Use. Final Report of TA 7250-IND, 2011
  4. Bhojvaid PP, Biofuels: Towards a greener and secure energy future. TERI Press, 2006
  5. Licht FO, World Ethanol Market: The Outlook to 2015, Tunbridge Wells, Agra Europe Special Report, UK, 2006
  6. Sukumaran RK, Surender VJ, Sindhu R, Binod P, Janu KU, Sajna KV, Rajasree KP, Pandey A, Bioresour. Technol., 101(13), 4826, 2010
  7. Berlin A, Balakshin M, Gilkes N, Kadla J, Maximenko V, Kubo S, Saddler J, J. Biotechnol., 125, 198, 2006
  8. Menon V, Rao M, Prog. Energy. Combust. Sci., 38, 522, 2012
  9. Kumar P, Barrett DM, Delwiche MJ, Stroeve P, Ind. Eng. Chem. Res., 48(8), 3713, 2009
  10. Han M, Kim Y, Kim Y, Chung B, Choi GW, Korean J. Chem. Eng., 28(1), 119, 2011
  11. Bjerre AB, Olesen AB, Fernqvist T, Ploger A, Schmidt AS, Biotechnol. Bioeng., 49(5), 568, 1996
  12. Ravikumar R, Ranganathan BV, Chathoth KN, Gobikrishnan S, Korean J. Chem. Eng., 30(5), 1051, 2013
  13. Schmidt AS, Thomsen AB, Bioresour. Technol., 64, 139, 1995
  14. Mishra VS, Mahajani VV, Joshi JB, Ind. Eng. Chem. Res., 34(1), 2, 1995
  15. Banerjee S, Sen R, Pandey RA, Chakrabarti T, Satpute D, Giri BS, Mudliar S, Biomass Bioenerg., 33(12), 1680, 2009
  16. Ayeni AO, Banerjee S, Omoleye JA, Hymore FK, Giri BS, Deshmukh SC, Pandey RA, Mudliar SN, Biomass Bioenerg., 48, 130, 2013
  17. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ, Bioresour. Technol., 101(13), 4851, 2010
  18. Simmons TJ, Lee SH, Miao J, Miyauchi M, Park TJ, Bale SS, Linhardt RJ, Wood Sci Technol., 45, 719, 2011
  19. Sluiter A, Hames B, Ruiz R, Scarlata C, Wooley R, Sluiter J, Golden, CO: National Renewable Energy Laboratory, NREL/TP-510-42618, 2008
  20. Miller GL, Anal. Chem., 31, 426, 1959
  21. Banerjee S, Sen R, Mudliar S, Pandey RA, Chakrabarti T, Satpute D, Biotechnol. Prog., 27(3), 691, 2011
  22. Kwak KO, Jung SJ, Chung SY, Kang CM, Huh YI, Bae SO, Biochem. Eng J., 31, 1, 2006
  23. Klinke HB, Ahring BK, Schmidt AS, Thomsen AB, Bioresour. Technol., 82(1), 15, 2002
  24. Palonen H, Thomsen AB, Tenkanen M, Schmidt AS, Viikari U, Appl. Biochem. Biotechnol., 117(1), 1, 2004
  25. Martin C, Marcet M, Thomsen AB, Bioresources, 3, 670, 2008
  26. Fayyaz-ur-Rehman M, Tariq MI, Aslam M, Khadija G, Iram A, Open Enzym Inhib J., 2, 8, 2009
  27. Kristensen JB, Felby C, Jørgensen H, Appl. Biochem. Biotechnol., 156(1-3), 127, 2009