Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.2, 205-210, 2015
초임계 이산화탄소를 이용한 Nannochloropsis sp. 미세조류로부터 바이오디젤 생산용 지질의 추출
Lipid Extraction from Nannochloropsis sp. Microalgae for Biodiesel Production Using Supercritical Carbon Dioxide
본 연구에서는 미세조류인 Nannochloropsis sp.로부터 바이오디젤 생산용 지질을 얻기 위하여 유기용매 및 초임계 이산화탄소(SC-CO2)를 이용하여 추출을 수행하였다. SC-CO2 추출법으로 얻은 지질의 지방산메틸에스테르 함량은 58.31%로 높았으며, Bligh-Dyer 추출법은 18.0 wt.%의 가장 높은 조지방 수율을 나타내었다. SC-CO2 추출법에 극성을 높이기 위해 공용매로서 methanol을 사용한 결과, 조지방 수율 12.5 wt.%, 지방산메틸에스테르 함량 56.32%, 지방산메틸에스테르 수율 7.04 wt.%였으며, SC-CO2 만을 이용하는 추출 방법에 비하여 추출 시간을 2시간에서 30분으로 단축시킬 수 있었다. 따라서 미세조류에서 지질을 추출하는데 기존의 유기용매 추출법과 비교하여 SC-CO2 추출법이 친환경적이며, 효율적인 방법임을 확인하였다.
In this paper, microalgae lipid extractions were performed using conventional organic solvent and supercritical carbon dioxide (SC-CO2) for biodiesel-convertible lipid fractions. The highest levels (58.31%) of fatty acid methyl ester (FAME) content in the lipid extracted by SC-CO2 was obtained, and 18.0 wt.% crude lipid yield was achieved for Bligh-Dyer method. In the SC-CO2 extraction, methanol as a co-solvent was applied to increase the polarity of extract. The experimental results indicated that crude lipid yield, FAME content and yield extracted by combination of SC-CO2 with methanol were 12.5 wt.%, 56.32% and 7.04 wt.%, respectively, and this method could reduce the extraction time from 2 hour to 30 min when compared to SC-CO2 extraction. Therefore, SC-CO2 extraction is proven to be an environmentally-friendly and an effective method for lipid extraction from microalgae.
[References]
  1. Demirbas A, Energy Conv. Manag., 50(1), 14, 2009
  2. Gavrilescu M, Chisti Y, Biotechnology Advances, 23, 471, 2005
  3. Pulz O, Gross W, Appl. Microbiol. Biotechnol., 65(6), 635, 2004
  4. Chisti Y, Biotechnology Advances, 25, 294, 2007
  5. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ, Curr. Opin. Biotechnol., 19, 430, 2008
  6. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B, Bioenergy Research, 1, 20, 2008
  7. Lardon L, Helias A, Sialve B, Steyer P, Bernard O, Environ. Sci. Technol., 43(17), 6475, 2009
  8. Lee HS, Jeon SG, Oh YK, Kim KH, Chung SH, Na JG, Yeo SD, Korean Chem. Eng. Res., 50(4), 672, 2012
  9. Mata TM, Martins AA, Caetano NS, Renew. Sust. Energ. Rev., 14, 217, 2010
  10. Kim JK, Um BH, Kim TH, Korean J. Chem. Eng., 29(2), 209, 2012
  11. Mercer P, Amenta RE, European Journal of Lipid Science and Technology, 113, 539, 2011
  12. Araujo GS, Matos LJBL, Fernandes JO, Cartaxo SJM, Goncalves LRB, Fermamdes FAN, Farias WRL, Ultrason. Sonochem., 20, 95, 2013
  13. Shin HY, Ryu JH, Bae SY, Crofcheck C, Crocker M, Fuel, 130, 66, 2014
  14. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M, Tariq S, J. Supercrit. Fluids, 86, 57, 2014
  15. Tang SK, Qin CR, Wang HG, Li SF, Tian SJ, J. Supercrit. Fluids, 57(1), 44, 2011
  16. Mendes RL, Nobre BP, Cardoso MT, Pereira AP, Palavra AF, Inorg. Chim. Acta., 356, 328, 2003
  17. Cheung PCK, Food Chem., 65, 399, 1999
  18. Andrich G, Nesti U, Venturi F, Zinnai A, Fiorentini R, European Journal of Lipid Science and Technology, 107, 381, 2005
  19. Couto RM, Simoes PC, Reis A, Silva TLD, Martins VH, Sanchex-Vicente Y, Engineering in Life Sciences, 10(2), 158, 2010
  20. Choi KJ, Nakhost Z, Krukonis VJ, Karel M, Food Biotechnology, 1, 268, 1987
  21. Sajilata MG, Singhal RS, Kamat MY, J. Food Eng., 84(2), 321, 2008
  22. Tang SK, Qin CR, Wang HG, Li SF, Tian SJ, J. Supercrit. Fluids, 57(1), 44, 2011
  23. Kinney AJ, Clemente TE, Fuel Process. Technol., 86(10), 1137, 2005