Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.2, 199-204, 2015
아임계수 가수분해를 통한 돈지로부터 지방산 생산의 최적화
Optimization of Fatty Acids Production from Lard via Subcritical Water-Mediated Hydrolysis
지방산 생산을 위한 돈지의 아임계수 가수분해 공정을 최적화하기 위하여 17-run 중심합성법(central composite design)에 기초한 반응표면법(response surface methodology)이 사용되었다. 반응 온도, 오일 대비 물의 몰 비, 반응 시간과 같은 변수 및 이들의 상관관계가 지방산 함량에 미치는 영향을 조사하였으며, 지방산 함량을 예측하기 위하여 2차 다항 회귀방정식이 제안되었다. 최대 지방산 함량을 얻을 수 있는 반응 조건은 288.5 oC, 39.5몰 비, 29.5분이었으며, 이 조건에서의 예측 및 실제 지방산 함량은 각각 97.06% 및 96.99%였다.
Response surface methodology (RSM) in combination with a 17-run central composite design (CCD) was applied to optimize the non-catalytic hydrolysis of lard using subcritical water to produce fatty acids (FA). The effects of three variables including temperature, molar ratio of water to oil and time, and their relationship on FA content were investigated. A quadratic regression model was employed to predict the FA contents. Optimum reaction conditions for maximizing the FA content were obtained as follows: reaction temperature of 288.5°C, molar ratio of water to oil of 39.5 and reaction time of 29.5 min. Under the optimum conditions, the predicted and experimentally obtained FA contents were 97.06% and 96.99%, respectively.
[References]
  1. Arpe HJ, Ullmann’s Encyclopedia, Industrial Organic Chemicals: Starting Materials and Intermediates, Vol. 4, First Ed., pp. 2481-2532, Wiley-VCH, Weinheim, 1999
  2. Minami E, Saka S, Fuel, 85(17-18), 2479, 2006
  3. Pinnarat T, Savage PE, J. Supercrit. Fluids, 53(1-3), 53, 2010
  4. Srilatha K, Lingaiah N, Devi BLAP, Prasad RBN, Venkateswar S, Prasad PSS, Appl. Catal. A: Gen., 365(1), 28, 2009
  5. Choi JH, Park YB, Lee SH, Cheon JK, Woo HC, Korean Chem. Eng. Res., 48(5), 583, 2010
  6. Hayyan A, Hashim MA, Mirghani MES, Hayyan M, AlNashef IM, Korean J. Chem. Eng., 30(6), 1229, 2013
  7. Hong SW, Cho HJ, Yeo YK, Korean Chem. Eng. Res., 52(3), 395, 2014
  8. Immer JG, Kelly MJ, Lamb HH, Appl. Catal. A: Gen., 375(1), 134, 2010
  9. Monnier J, Sulimma H, Dalai A, Caravaggio G, Appl. Catal. A: Gen., 382(2), 176, 2010
  10. Ping EW, Pierson J, Wallace R, Miller JT, Fuller TF, Jones CW, Appl. Catal. A: Gen., 396(1-2), 85, 2011
  11. Mills V, Mcclain HK, Ind. Eng. Chem., 41, 1982, 1949
  12. Reinish MD, J. Am. Oil Chem. Soc., 33, 516, 1956
  13. Albasi C, Bertrand N, Riba JP, Bioprocess Eng., 20, 77, 1999
  14. Park YK, Pastore GM, Almedia MMD, J. Am. Oil Chem. Soc., 65, 252, 1988
  15. Holliday RL, King JW, List GR, Ind. Eng. Chem. Res., 36(3), 932, 1997
  16. Alenezi R, Leeke GA, Santos RCD, Khan AR, Chem. Eng. Res. Des., 87(6A), 867, 2009
  17. Alenezi R, Baig M, Wang J, Santos R, Leeke GA, Energy Sources Part A-Recovery Util. Environ. Eff., 32(5), 460, 2010
  18. King JW, Holliday RL, List GR, Green Chem., 1, 261, 1999
  19. Kocsisova T, Juhasz J, Cvengros J, Eur. J. Lipid Sci. Technol., 108, 652, 2006
  20. Kusdiana D, Saka S, Appl. Biochem. Biotechnol., 113-116, 781, 2004
  21. http://en.wikipedia.org/wiki/Samgyeopsal.
  22. Korean Agency for Technology and Standards. KATS; KS H ISO 660:2007, Animal and Vegetable Fats and Oils - Determination of Acid Value and Acidity, 2007
  23. Shin HY, Ryu JH, Park SY, Bae SY, J. Anal. App. Pyrolysis, 98, 250, 2012