Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.2, 174-180, 2015
8자 진동교반에 의한 교반조내 유동상태 및 물질전달 특성
Characteristics of Flow Pattern and Mass Transfer in a Shaking Vessel with Figure-Eight Circulating Motion
8자 진동교반조에 대해 실험적으로 유동상태를 관찰하여 혼합 가시화, 소요동력, 고-액 및 기-액 물질이동에 대한 여러 가지의 특성을 측정하였다. 진동수가 증가하면 유동상태, 혼합시간 소요동력 및 물질이동계수는 규칙적으로 변하지 않으므로 조작조건의 선정이 중요하다. 어떤 진동수에서라도 Fr = 0.095 이상에서는 실험적으로 명확하게 되었다. 이때 교반조내 유체는 선회류형으로 되어 혼합에 적합한 상태가 되고, 8자 진동교반에서의 최적 조작범위는 왕복 진동교반 보다도 넓었다. 8자 진동교반과 기존의 선회진동교반내의 고-액간 물질이동계수는 완전히 같은 식으로 상관되었다. 또한 기-액간 물질이동용량계수도 기존의 선회진동교반에서의 식과 같은 형태의 상관식으로 나타났다.
The flow pattern and the solid-liquid mass transfer coefficient in figure-eight shaking vessels were observed by experimental method. The flow patterns, mixing time, power consumption and mass transfer coefficient in the figureeight shaking vessels changed irregularly with increase in the shaking frequency. Any frequency, even in the Fr = 0.095 or more became clear experimentally. The region of the optimum operating condition of the figure-eight shaking was larger than that of the reciprocal shaking. The solid-liquid mass transfer coefficient was correlated with the same correlation as that of the rotary shaking vessel of existing. The gas-liquid mass transfer coefficient of the figure-eight shaking vessel was also correlated with the same type of correlation as that of the rotary shaking vessel of existing.
[References]
  1. Smith CG, Marvin JJ, J. Bacteriol., 68, 346, 1954
  2. Roth NG, Lively DH, Hodge HM, J. Bactriol., 69, 455, 1955
  3. Rhodes RP, Garden Jr EL, Ind. Eng. Chem., 49, 1232, 1957
  4. Auro MA, Howard MH, Roth NG, Ind. Eng. Chem., 49, 1237, 1957
  5. Garden Jr EL, Biotech. Bioeng., 4, 99, 1962
  6. Hara M, HakkouKogaku, 43, 590, 1965
  7. Hara M, HakkouKogaku, 43, 597, 1965
  8. Brandl EAS, Steiner H, Biotech. Bioeng., 8, 297, 1966
  9. Sumino Y, Akiyama S, Fukada H, J. Ferment. Technol., 50, 203, 1972
  10. Sumino Y, Akiyama S, J. Ferment. Technol., 65, 285, 1987
  11. Gardner J, Tatterson G, Biotechnol. Bioeng., 39, 794, 1992
  12. Fujita M, Iwahori K, Tatsuta S, Yamakawa K, J. Ferment. Bioeng., 78(5), 368, 1994
  13. Kato Y, Hiraoka S, Tada Y, Koh ST, Lee YS, Trans. IChemE., 74, 451, 1996
  14. Kato Y, Hiraoka S, Tada Y, Sato K, Ohishi T, J. Chem. Eng. Jpn., 30(2), 362, 1997
  15. Kato Y, Hiraoka S, Tada Y, Nomura T, Can. J. Chem. Eng., 76(3), 441, 1998
  16. Kato Y, Hiraoka S, Tada Y, Ue T, Saito T, Nomura T, J. Chem. Eng. Jpn., 29(4), 697, 1996
  17. Kato Y, Honda H, Hiraoka S, Tada Y, Kobayashi T, Sato K, Saito T, Nomura T, Ohishi T, J. Ferment. Bioeng., 84(1), 65, 1997
  18. Buchs J, Maier U, Milbradt C, Zoels B, Biotechnol. Bioeng., 68(6), 589, 2000
  19. Buchs J, Maier U, Milbradt C, Zoels B, Biotechnol. Bioeng., 68(6), 594, 2000
  20. Buchs J, Zoels B, J. Chem. Eng. Jpn., 34(5), 647, 2001
  21. Kato I, Tanaka H, J. Ferment. Bioeng., 85(4), 404, 1998
  22. Kato Y, Hiraoka S, Tada Y, Hirose K, Buchs J, J. Chem. Eng. Jpn., 36(6), 663, 2003
  23. Kato Y, Hiraoka S, Tada Y, Watanabe S, Buchs J, J. Chem. Eng. Jpn., 36(11), 1410, 2003
  24. Malik M, Mujumdar A, Dave R, Powder Technol., 133(1-3), 91, 2003
  25. Hiraoka S, Tada Y, Suzuki H, Mori H, Aragaki T, Yamada I, J. Chem. Eng. Japan, 23, 468, 1990
  26. Levins BE, Glastonbury JR, Trans. IChemE, 50, 132, 1972
  27. Lee YS, Korean Chem. Eng. Res., 50(5), 913, 2012
  28. Lee YS, Kato Y, Suzuki J, J. Korean Ind. Eng. Chem., 17(5), 509, 2006