Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.2, 150-155, 2015
LNG 터미널 송출 운전 최적화 사례 연구
Case Study on Optimization of Send-out Operation in Liquefied Natural Gas Receiving Terminal
최근 전세계적인 액화천연가스(LNG) 수요의 증가로 인해 LNG 터미널의 건설이 크게 늘어나고 있으며 기존의 LNG 터미널도 저장시설을 확장하고 있는 추세이다. 이에 따라 LNG 터미널의 다수의 저장탱크가 존재할 때 LNG를 송출하게 될 탱크와 각 송출량을 선택하는 것은 전체 공정 운전에 중대한 영향을 미칠 수 있다. 본 연구에서는 전체 송출량이 정해져 있을 경우 레벨이 각기 다른 탱크들에 대해 발생하는 BOG 양을 최소화 할 수 있도록 각 탱크의 송출량을 최적화하는 연구를 수행하였다. 저장 탱크의 특성과 구조에 맞게 벽면과 바닥면에서 유입되는 열과 탱크 재질의 열전도 도를 고려한 동적모델을 구성하였고, 레벨을 변화시켜 각 레벨에 따른 BOG 양을 계산하여 얻은 BOG 발생량을 탱크레벨에 따라 지수함수로 회귀분석하였다. 이를 통해 탱크의 특성과 레벨에 따라 BOG 발생량을 예측할 수 있는 BOR(Boil-off Rate) 모델을 얻을 수 있었다. 개발한 BOR 모델을 이용하여 BOG 발생량을 최소화하는 목적함수를 설정하고 요구되는 송출량, 탱크내 레벨 제한, 탱크 당 가능한 송출량을 제한조건으로 설정하여 각 탱크의 최적 송출량을 결정하는 운전 최적화를 수행하였다. 이를 실제 운전되고 있는 인천 LNG 터미널의 18개 저장탱크에 적용하여 다양한 레벨이 분포되어 있고 총 송출량이 80,000 m3/day(최대 송출량)이 요구되는 시나리오에 대해 최적화를 수행하여 가정한 기존의 운전방법과 비교하였을 때 BOG 양을 약 9% 감소시킬 수 있었다.
Recently, LNG receiving terminals have been widely constructed and expanded for an increase in LNG demand. Selection of the storage tank for send-out and estimation of send-out flow rate have significant influence to process operation and economics. In this study, a send-out flow rate of each storage tank is optimized in order to minimize the total BOG generation rate. Considering a size and characteristic of each storage tanks, BOG flow rates are estimated using a dynamic simulation with varying liquid levels in the tanks. The regression model is developed fitting BOG flow rates and tank liquid levels, which are boil off rate model to predict BOG flow rates with particular level data. The objective function and constraints including required total send-out flow rate and level limit in the tanks are formulated to optimize a send-out flow rate of each tank. This method for optimization of send-out operation is applied to the Incheon LNG receiving terminal considering two scenarios for various liquid levels and maximum and minimum required send-out flow rates. For maximum required send-out flow rate, this method achieves BOG reduction of 9% comparing with assumed conventional operation.
[References]
  1. Jung MJ, Cho JH, Ryu W, LNG terminal design feedback from operator’s practical improvements. Conference LNG terminal design feedback from operator’s practical improvements.
  2. Deng SM, Jin HG, Cai RX, Lin RM, Energy, 29(4), 497, 2004
  3. Kim TS, Ro ST, Energy, 25(9), 841, 2000
  4. Miyazaki T, Kang YT, Akisawa A, Kashiwagi T, Energy, 25(7), 639, 2000
  5. Liu HT, You LX, Energy Conv. Manag., 40(14), 1515, 1999
  6. Qiang W, Yanzhong L, Jiang W, Appl. Therm. Eng., 24(4), 539, 2004
  7. Qiang W, Li YZ, Xi C, Int. J. Energy Res., 29(1), 65, 2005
  8. Szargut J, Szczygiel I, Energy, 34(7), 827, 2009
  9. Lee CJ, Lim Y, Park C, Lee S, Han C, Optimal Unloading Procedure for a Mixed Operation of Above-ground and In-ground LNG Storage Tank using Dynamic Simulation. Conference Optimal Unloading Procedure for a Mixed Operation of Above-ground and In-ground LNG Storage Tank using Dynamic Simulation. Elsevier, p. 437-44.
  10. Park C, Lee CJ, Lim Y, Lee S, Han C, Journal of the Taiwan Institute of Chemical Engineers, 41(4), 482, 2010
  11. Park C, Song K, Lee S, Lim Y, Han C, Energy, 44(1), 69, 2012
  12. Ha Y, Lee S, Korean Chem. Eng. Res., 49(1), 35, 2011
  13. Shin MW, Shin D, Choi SH, Yoon ES, Korean J. Chem. Eng., 25(1), 7, 2008
  14. Shin MW, Shin D, Choi SH, Yoon ES, Han CG, Ind. Eng. Chem. Res., 46(20), 6540, 2007
  15. Li YJ, Chen XS, Chein MH, Chem. Eng. Res. Des., 90(10), 1500, 2012
  16. Kwon YH, Journal of the Korea Concrete Institute, 11, 85, 1999
  17. Son Y, Ha J, Um T, Lee J, Baek S, Park C, Spring Conference of the Korea Concrete Institute, 637, 2008
  18. Kim T, Ha J, Ryu J, Lee J, Kwon Y, Autumn Conference of the Korea Concrete Institute, 421, 2002
  19. Yang IH, Kim JK, Journal of the Korea Concrete Institute, 13, 89, 2001
  20. Lee K, Lee S, Kim YK, Autumn Conference of the Korea Institue of Gas, 71, 2004
  21. Pfundstein M, Gellert R, Spitzner M, Rudolphi A, Insulating materials: principles, materials, applications: Walter de Gruyter, 2012
  22. Hashemi H, Wesson H, Hydrocarb. Process., 50(8), 117, 1971
  23. Park S, Park C, Lee U, Jung I, Na J, Kshetrimayum K, Han C, “Comparative Study of Process Integration and Retrofit Design of Liquefied Natural gas (LNG) Regasification Process Based on Exergy Analyses: A Case Study of LNG Regasification Process in South Korea,” Ind. Eng. Chem. Res., accepted, 2014