Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.2, 145-149, 2015
LiCl 용융염에서 전해환원법을 통한 La0.5Nd0.5Ni5 합금 제조
Preparation of La0.5Nd0.5Ni5 Alloy by an Electrochemical Reduction in Molten LiCl
LiCl 용융염에서 희토류 금속을 포함한 Nd2O3-La2O3-NiO 복합산화물의 전해환원을 통한 La0.5Nd0.5Ni5 합금제조에 대한 연구를 수행하였다. Nd2O3-La2O3-NiO 복합산화물은 1100 oC에서 소결시에 NiNd2O4 (스피넬)과 LaNiO3 (페로브스카이트) 구조가 생성되었다. 스피넬 및 페로브스카이트 구조는 복합산화물의 전해환원 반응속도를 증가시켰다. LiCl 용융염에서 전해환원 반응 동안 Nd2O3-La2O3-NiO 복합산화물은 Ni, NiLa2O4 등의 다양한 중간생성물을 거쳐 La0.5Nd0.5Ni5 합금으로 환원됨을 확인할 수 있었다. XRD 분석결과를 통해 최종 생성물인 La0.5Nd0.5Ni5의 생성 메카니즘을 제시하였다.
The electrochemical behavior of Nd2O3-La2O3-NiO mixed oxide including rare earth resources has been studied to synthesize La0.5Nd0.5Ni5 alloy in a LiCl molten salt. The Nd2O3-La2O3-NiO mixed oxide was converted to NiNd2O4 (spinel) and LaNiO3 (perovskite) structures at a sintering temperature of 1100 oC. The spinel and perovskite structures led a speed-up in the electrolytic reduction of the mixed oxide. Various reaction intermediates such as Ni, NiLa2O4 were observed during the electrochemical reduction by XRD analysis. A possible reaction route to La0.5Nd0.5Ni5 in the LiCl molten salt was proposed based on the analysis result.
[References]
  1. Schlapbach L, Zuttel A, Nature, 414(6861), 353, 2001
  2. Tliha M, Mathlouthi H, Lamloumi J, Percheron-guegan A, Int. J. Hydrog. Energy, 32(5), 611, 2007
  3. Zhao B, Wang L, Dai L, Cui G, Zhou H, Kumar R, J. Alloys Compd., 468(1), 379, 2009
  4. Drasner A, Blazina Z, J. Alloys Compd., 381(1), 188, 2004
  5. Zhu Y, Wang D, Ma M, Hu X, Jin X, Chen GZ, Chem. Commun., 2515, 2007
  6. Yoon HS, Kim CJ, Chung KW, Lee SJ, Joe AR, Shin YH, Lee SI, Yoo SJ, Kim JG, Korean J. Chem. Eng., 31(4), 706, 2014
  7. Nam SU, Paik YH, J. Korean Inst. Met. Mater., 31(9), 1156, 1993
  8. Choi EY, Hur JM, Choi IS, Kwon SG, Kang DS, Hong SS, Shin HS, Yoo MA, Jeong SM, J. Nucl. Mater., 418(1), 87, 2011
  9. Choi EY, Hong SS, Park W, Im HS, Oh SC, Won CY, Cha JS, Hur JM, Korean Chem. Eng. Res., 52(3), 279, 2014
  10. Ryu HY, Jeong SM, Kim JG, Korean Chem. Eng. Res., 50(6), 939, 2012
  11. Chen GZ, Fray DJ, Farthing TW, Nature, 407(6802), 361, 2000
  12. Ma M, Wang D, Wang W, Hu X, Jin X, Chen GZ, J. Alloys Compd., 420(1), 37, 2006
  13. Chen G, Fray D, “Understanding the Electro-reduction of Metal Oxides in Molten Salts,” Light Metals 881-886, 2004
  14. Qiu GH, Feng XH, Liu MM, Tan WF, Liu F, Electrochim. Acta, 53(12), 4074, 2008
  15. Kim PH, Xie HW, Zhai YC, Zou XY, Lang XC, J. Appl. Electrochem., 42(4), 257, 2012
  16. Ji HS, Ryu HY, Jeong SM, Cho SW, Chem. Lett., 42(10), 1182, 2013
  17. Abdelkader AM, Hyslop DJS, Cox A, Fray DJ, J. Mater. Chem., 20, 6039, 2010
  18. Zhang Y, Yin H, Zhang S, Tang D, Yuan Z, Yan T, Zheng W, Wang D, J. Rare Earths., 30(9), 923, 2012
  19. Kim DS, Cho PS, Lee JH, Kim DY, Lee SB, Solid State Ion., 177(19-25), 2125, 2006