Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.2, 131-136, 2015
양극전착을 통한 그래핀-바나듐 산화물 복합체 제조 및 전기화학적 특성평가
Electrochemical Properties of Graphene-vanadium Oxide Composite Prepared by Electro-deposition for Electrochemical Capacitors
본 연구에서는 전극 활물질로서 그래핀-바나듐 산화물 복합체를 pH 1.8 조건에서 0.5M VOSO4 수용액을 이용하여 전기화학적 전착을 이용해 합성하였다. 전착공정 후 다공성 바나듐 산화물이 작업전극에 생성된 것을 SEM, XRD, XPS를 통해 확인하였으며 생성된 바나듐 산화물은 V5+와 V4+로 존재한다. 그래핀에 전착된 바나듐 산화물의 직경 약 100 nm의 나노로드로 이루어진 망상 구조는 전극과 전해질과의 접촉을 향상시킨다. 4000 초의 전착공정을 거친 그래핀-바나듐 산화물 복합체를 작업전극으로 하여 3전극 셀에서 전기화학적 특성을 평가한 결과 20 mV/s의 주사속도에서 854 mF/cm2의 높은 정전용량을 나타내었고 1000회 충방전 후 초기 용량의 53%가 유지되었다.
The nanostructural graphene/vanadium oxide (graphene/V2O5) composite with enhanced capacitance was synthesized by the electro-deposition in 0.5 M VOSO4 solution. The morphology of composites was characterized using scanning electron microscopy (SEM), x-ray diffraction pattern (XRD), and x-ray photoelectron spectroscopy (XPS). The oxidation states of the electro-deposited vanadium oxide was found to be V5+ and V4+. The morphology of the prepared graphene/V2O5 composite exhibits a netlike nano-structure with V2O5 nanorods in about 100 nm diameter, which could lead a better contact between electrolyte an electrode. The composite with a deposition time of 4,000 s exhibits the specific capacitance of 854 mF/cm2 at a scan rate of 20 mV/s and the capacitance retention of 53% after 1000 CV cycles.
[References]
  1. Choi BG, Huh YS, Hong WH, Korean Chem. Eng. Res., 50(4), 754, 2012
  2. Reddy RN, Reddy RG, J. Power Sources, 156(2), 700, 2006
  3. Ghosh A, Ra EJ, Jin M, Jeong HK, Kim TH, Biswas C, Lee YH, Adv. Funct. Mater., 21(13), 2541, 2011
  4. Fang W, The Journal of Physical Chemistry C, 112(30), 11552, 2008
  5. Toupin M, Belanger D, Hill IR, Quinn D, J. Power Sources, 140(1), 203, 2005
  6. Frackowiak E, Khomenko V, Jurewicz K, Lota K, Beguin F, J. Power Sources, 153(2), 413, 2006
  7. Kim YI, Yoon JK, Kown JS, Ko JM, Korean Chem. Eng. Res., 48(4), 440, 2010
  8. Galizzioli D, Tantardini F, Trasatti S, J. Appl. Electrochem., 4(1), 57, 1974
  9. Cheng Q, Tang J, Ma J, Zhang H, Shinya N, Qin L, Carbon, 49(9), 2917, 2011
  10. Bonso JS, Rahy A, Perera SD, Nour N, Seitz O, Chabal YJ, Balkus KJ, Ferraris JP, Yang DJ, J. Power Sources, 203, 227, 2012
  11. Zhou XW, Cui CJ, Wu GM, Yang HY, Wu JD, Wang JC, Gao GH, J. Power Sources, 238, 95, 2013
  12. Zhou XW, Wu GM, Gao GH, Cui CJ, Yang HY, Shen J, Zhou B, Zhang ZH, Electrochim. Acta, 74, 32, 2012
  13. Pan A, Zhang J, Nie Z, Cao G, Arey BW, Li G, Liang S, Liu J, J. Mater. Chem., 20(41), 9193, 2010
  14. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y, Nano letters, 10(11), 4750, 2010
  15. Kong L, Liu M, Lang J, Liu M, Luo Y, Kang L, Journal of Solid State Electrochemistry, 15(3), 571, 2011
  16. Potiron E, La Salle AL, Verbaere A, Piffard Y, Guyomard D, Electrochim. Acta, 45(1-2), 197, 1999
  17. Jeong KH, Jeong SM, Electrochim. Acta, 108, 801, 2013
  18. Meier RJ, Pijpers A, Theoretica. Chimica. Acta., 75(4), 261, 1989
  19. Choi J, Appl. Surf. Sci., 148(1), 64, 1999
  20. Silversmit G, Depla D, Poelman H, Marin GB, De Gryse R, J. Electron Spectrosc. Relat. Phenom., 135(2), 167, 2004
  21. Toupin M, Brousse T, Belanger D, Chem. Mater., 14(9), 3946, 2002
  22. Lao ZJ, Konstantinov K, Tournaire Y, Ng SH, Wang GX, Liu HK, J. Power Sources, 162(2), 1451, 2006
  23. Li J, Chang K, Hu C, Electrochem. Commun., 12(12), 1800, 2010