Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.1, 103-110, 2015
철강공정 배기가스로부터 가스 하이드레이트 형성에 미치는 촉진제의 영향
Effects of Promoter on the Formation of Gas Hydrate from Blast Furnace Gas
본 연구에서는 가스 하이드레이트 기술을 이용하여 철강 공정 배기가스로부터 CO2를 분리하는데 사용하는 여러 촉진제의 성능을 조사하였다. 이 실험에서는 CO2/N2 혼합가스 (CO2/N2=20/80, 40/60)와 CO2/N2 이외에 CO, H2가 첨가된 Blast furnace gas (BFG) 모델 가스를 대상 가스로 사용하였다. 촉진제로는 구조 II 하이드레이트를 형성한다고 알려진 tetrahydrofuran (THF), propylene oxide, 1,4-dioxane 를 사용하였으며, 각 가스에 대하여 촉진제를 농도별로 첨가했을때 상평형점의 변화를 측정하였다. 상평형점은 “연속” Quartz crystal microbalance (QCM) 방식을 이용하였다. 또한, Powder X-ray diffraction (PXRD) 분석을 통하여 촉진제의 첨가가 가스 하이드레이트 구조에 미치는 영향을 알아보았다.
In this work, the performance of various promoters was investigated used in CO2 separation from the gases emitted from steel-making process using gas hydrate technology. The studied promoters are tetrahydrofuran (THF), propylene oxide and 1,4-dioxane, which are all expected to form a structure II hydrate, and the target gases include CO2/N2 mixed gases (CO2/N2 = 20/80 and 40/60) and Blast Furnace Gas (BFG). The phase equilibrium points were measured when each promoter was added with various concentrations. For fast acquisition of abundant data, the “continuous” Quartz crystal microbalance (QCM) method was employed. In addition, the crystal structure of each gas hydrate was analyzed by Powder X-ray diffraction (PXRD).
[References]
  1. https://www.ipcc.ch/report/ar5/wg1.
  2. Association, W. S., “World Steel in Figures 2008. Brussels: World steel association,”, 2008
  3. http://www.gir.go.kr/og/hm/ic/g/OGHMICG010M.do?year=2012&headerValue=04&leftValue=02.
  4. http://www.ieagreen.org.uk/sr2p.htm.
  5. Kang SP, Lee H, Environ. Sci. Technol., 34, 4397, 2000
  6. Lee BR, Ryu JH, Han K, Park DH, Lee KH, Lee IB, Korean Chem. Eng. Res., 48(2), 232, 2010
  7. Sloan Jr ED, Koh C, Clathrate Hydrates of Natural Gases, CRC press, 2007
  8. Seo YT, Kang SP, Lee H, Fluid Phase Equilib., 189(1-2), 99, 2001
  9. Saito Y, Kawasaki T, Kondo T, Hiraoka R, “Methane Storage in Hydrate Phase with Water Soluble Guests,” Proceeding of the Second International Conference on Gas Hydrate, Toulouse, France, pp. 459-465, 1996
  10. Maekawa T, Fluid Phase Equilib., 303(1), 76, 2011
  11. Seo Y, Kang SP, Lee S, Lee H, J. Chem. Eng. Data, 53(12), 2833, 2008
  12. Mohammadi AH, Martinez-Lopez JF, Richon D, Chem. Eng. Sci., 65(22), 6059, 2010
  13. Strobel TA, Koh CA, Sloan ED, Fluid Phase Equilib., 280(1-2), 61, 2009
  14. Yoon JH, Korean J. Chem. Eng., 29(12), 1670, 2012
  15. Fan S, Liang D, Guo K, J. Chem. Eng. Data, 46, 930, 2001
  16. Trueba AT, Rovetto LJ, Florusse LJ, Kroon MC, Peters CJ, Fluid Phase Equilib., 307(1), 6, 2011
  17. Zhang J, Lee JW, J. Chem. Eng. Data, 54, 659, 2008
  18. Zhang J, Lee JW, Ind. Eng. Chem. Res., 48, 5934, 2008
  19. Mohammadi AH, Richon D, Chem. Eng. Sci., 64(24), 5319, 2009
  20. Lim YA, Babu P, Kumar R, Linga P, Crystal Growth & Design, 13, 2047, 2013
  21. Shimada W, Ebinuma T, Oyama H, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H, Jpn. J. Appl. Phys., 42, 129, 2003
  22. Kamata Y, Oyama H, Shimada W, Ebinuma T, Takeya S, Uchida T, Nagao J, Narita H, Jpn. J. Appl. Phys., 43, 362, 2004
  23. Shin K, Kim Y, Strobel TA, Prasad PSR, Sugahara T, Lee H, Sloan ED, Sum AK, Koh CA, J. Phys. Chem. A, 113(23), 6415, 2009
  24. Acosta HY, Bishnoi PR, Clarke MA, J. Chem. Eng. Data, 56, 69, 2010
  25. Lee S, Lee Y, Park S, Seo Y, J. Chem. Eng. Data, 55(12), 5883, 2010
  26. Chapoy A, Gholinezhad J, Tohidi B, J. Chem. Eng. Data, 55(11), 5323, 2010
  27. Li G, Liu D, Xie Y, J. Therm. Anal. Calorim., 102, 819, 2010
  28. Oshima M, Shimada W, Hashimoto S, Tani A, Ohgaki K, Chem. Eng. Sci., 65(20), 5442, 2010
  29. Rodionova T, Komarov V, Villevald G, Aladko L, Karpova T, Manakov A, J. Phys. Chem. B, 114(36), 11838, 2010
  30. Deschamps J, Dalmazzone D, J. Chem. Eng. Data, 55(9), 3395, 2010
  31. Li SF, Fan SS, Wang JQ, Lang XM, Wang YH, J. Chem. Eng. Data, 55(9), 3212, 2010
  32. Sun ZG, Sun L, J. Chem. Eng. Data, 55(9), 3538, 2010
  33. Li XS, Xu CG, Chen ZY, Wu HJ, Energy, 35(9), 3902, 2010
  34. Li XS, Xia ZM, Chen ZY, Yan KF, Li G, Wu HJ, J. Chem. Eng. Data, 55, 2180, 2009
  35. Mayoufi N, Dalmazzone D, Furst W, Delahaye A, Fournaison L, J. Chem. Eng. Data, 55, 1271, 2009
  36. Makino T, Yamamoto T, Nagata K, Sakamoto H, Hashimoto S, Sugahara T, Ohgaki K, J. Chem. Eng. Data, 55, 839, 2009
  37. Deschamps J, Dalmazzone D, J. Therm. Anal. Calorim., 98, 113, 2009
  38. Fan SS, Li SF, Wang JQ, Lang XM, Wang YH, Energy Fuels, 23(8), 4202, 2009
  39. Lee BR, Sa JH, Park DH, Cho S, Lee J, Kim HJ, Oh E, Jeon S, Lee JD, Lee KH, Energy Fuels, 26, 767, 2011
  40. Sa JH, Kwak GH, Lee BR, Park DH, Han K, Lee KH, Scientific Reports, 3, 2013
  41. Seo YT, Lee H, J. Phys. Chem. B, 108(2), 530, 2004
  42. Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED, Science, 306, 469, 2004
  43. Alavi S, Susilo R, Ripmeester JA, J. Chem. Phys., 130, 174501, 2009
  44. Van Cleeff A, Diepen G, Recueil des Travaux Chimiques des Pays-Bas, 84, 1085, 1965
  45. Adisasmito S, Frank III RJ, Sloan Jr ED, J. Chem. Eng. Data, 36, 68, 1991