Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.1, 91-102, 2015
Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid
Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.
[References]
  1. Shah RK, London AL, Laminar Flow Forced Convection in Ducts, Academic Press, New York, 1978
  2. Coelho PM, Pinho FT, Int. J. Heat Mass Transf., 49(19-20), 3349, 2006
  3. Manglik RM, Fang P, Int. J. Heat Fluid Flow, 16, 298, 1995
  4. Fang P, Manglik RM, Jog MA, J. Non-Newton. Fluid Mech., 84(1), 1, 1999
  5. Raju KK, Devanathan R, Rheol. Acta., 10, 484, 1971
  6. Hong SN, Matthews JC, Int. J. Heat Mass Transfer, 12, 1699, 1969
  7. Batra RL, Sudarsan VR, Comput. Meth. Appl. Mech. Eng., 95, 1, 1992
  8. Tanaka M, Mitsuishi N, Heat Transfer Jpn. Res., 4, 26, 1975
  9. Jambal O, Shigechi T, Davaa G, Momoki S, Int. Comm. Heat Mass Transfer, 32, 1174, 2005
  10. Pinho FT, Oliveira PJ, Int. J. Heat Mass Transf., 43(13), 2273, 2000
  11. Coelho PM, Pinho FT, Oliveira PJ, Int. J. Heat Mass Transf., 45(7), 1413, 2002
  12. Hashemabadi SH, Etemad S Gh, Narenji MRG, Thibault J, J., Int. Commun. Heat Mass Transfer, 30, 197, 2003
  13. Hashemabadi SH, Etemad SG, Thibault J, Int. J. Heat Mass Transf., 47(17-18), 3985, 2004
  14. Coelho PM, Pinho FT, Oliveira PJ, Int. J. Heat Mass Transf., 46(20), 3865, 2003
  15. Oliveira PJ, Coelho PM, Pinho FT, J. Non-Newton. Fluid Mech., 121(1), 69, 2004
  16. Pinho FT, Coelho PM, J. Non-Newton. Fluid Mech., 138(1), 7, 2006
  17. Khatibi AM, Mirzazadeh M, Rashidi F, Heat Mass Transfer, 46, 405, 2010
  18. Giesekus H, J. Non-Newton. Fluid Mech., 11, 69, 1982
  19. Giesekus H, J. Non-Newton. Fluid Mech., 12, 367, 1983
  20. Kakac S, Yener Y, Convective Heat Transfer, CRC Press, 1995
  21. Bird RB, Amstrong RC, Hassager O, Dynamics of Polymeric Liquids: Fluid Mechanics, Vol. 1, Wiley, New York, 1977
  22. Mohseni MM, Rashidi F, J. Non-Newton. Fluid Mech., 165(21-22), 1550, 2010
  23. Bejan A, Convection Heat Transfer, Wiley, New York, 1995
  24. Bhatara G, Shaqfeh ESG, Khomami B, J. Rheol., 49(5), 929, 2005