Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.1, 83-90, 2015
MWCNT 표면에 Michael 부가 반응으로 자유 라디칼 중합 가능한 Methacrylate기 도입에 대한 최적 개질 조건
Optimum Conditions for Introducing Free Radical Polymerizable Methacrylate Groups on the MWCNT Surface by Michael Addition Reaction
본 연구에서는 multi-walled carbon nanotube (MWCNT) 표면에 자유 라디칼 중합 가능한 methacrylate기를 다량으로 도입하기 위한 연구를 수행하였다. 먼저, MWCNT 표면에 카르복실기(-COOH)를 도입하기 위하여 황산과 질산의 혼산으로 초음파로 처리하면서 2시간 산화시켜 MWCNT-COOH를 합성하였다. 합성된 MWCNT-COOH를 염화티오닐(thionyl chloride)와 반응시켜 MWCNT-COCl을 합성하고, triethylenetetramine (TETA)와 반응시켜 MWCNT-NH2를 합성하였다. 합성된 MWCNT-NH2와 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM)의 투입 몰 비를 변화시키 면서 Michael 부가 반응으로 MWCNT 표면에 methacrylate기가 도입된 MWCNT-AHM을 합성하였다. MWCNT의 표면 개질정도는 fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA)와 원소분석(elemental analysis, EA) 분석을 통해 개질 반응의 진행 정도와 최적 개질 조건을 확인하였다. 그 결과 MWCNT-NH2에 접목되어 있는 TETA에 대하여 AHM의 반응 몰 비를 1:10로 하고 8시간 반응시켰을 때 methacrylate기가 가장 많이 도입되는 조건임을 확인하였다.
In this study, we investigated optimum conditions for the introduction of a lot of free radical polymerizable methacrylate groups on the multi-walled carbon nanotube (MWCNT) surface. Carboxyl groups were introduced first on MWCNT surfaces by treating with a mixture of sulfuric acid and nitric acid with ultrasonic bath for 2 hours, and oxidized MWCNTs were reacted further with thionyl chloride followed by triethylenetetramine (TETA) to introduce amino groups on the oxidized MWCNT surface, to make MWCNT-NH2. To introduce free radical polymerizable methacrylate groups on the MWCNT-NH2, MWCNT-NH2 was reacted with 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) by Michael addition reaction. We investigated progress of modification reactions for MWCNT by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and elemental analysis (EA). We found maximum degree of Michael addition reactions between AHM and TETA grafted on MWCNT-NH2 for 10:1 mol ratio and 8 hour reaction time in our reaction conditions.
[References]
  1. Iijima S, Nature, 354(7), 56, 1991
  2. Ajayan PM, Chem. Rev., 99(7), 1787, 1999
  3. Cooper CA, Ravich D, Lips D, Mayer J, Wagner HD, Compos. Sci. Technol., 62(7-8), 1105, 2002
  4. Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D, Polymer, 45(26), 8863, 2004
  5. Samakande A, Hartmann PC, Cloete V, Sanderson RD, Polymer, 48(6), 1490, 2007
  6. Park HS, Korean Chem. Eng. Res., 50(4), 729, 2012
  7. Lee KH, Kim YD, Lee MH, Min BH, Kim JH, J. Korean Ind. Eng. Chem., 20(5), 493, 2009
  8. Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE, Science, 273(5274), 483, 1996
  9. Yun CH, Lee HS, Polym. Sci. Technol., 18(1), 4, 2007
  10. Moon JY, Park DJ, Lim JH, Rotermund F, Lee S, Ahn YH, Korean J. Opt. Photon., 21, 33, 2010
  11. Lee JI, Jung HT, Korean Chem. Eng. Res., 46(1), 7, 2008
  12. Ryu JH, Nam BU, Journal of the Korea Academia-Industrial cooperation Society, 11(7), 2713, 2010
  13. Kim SS, Kim HJ, Yoo YJ, Lee SG, Choi KY, Lee JH, J. Adhes. Inter., 4(4), 22, 2003
  14. Zhang Y, Shi Z, Gu Z, Iijima S, Carbon, 38(15), 2055, 2000
  15. Kyotani T, Nakazaki S, Tomita A, Carbon, 39(5), 782, 2001
  16. Zhang M, Su L, Mao L, Carbon, 44(2), 276, 2006
  17. Santos VC, Hernandez AL, Castano VM, in Dirote EV (Ed.), Chemical Functionalization on Carbon Nanotubes: Principles and Applications,” Nova Science Publishers., New York, 51-78, 2004
  18. Wang DL, Lu SF, Jiang SP, Electrochim. Acta, 55(8), 2964, 2010
  19. Shao L, Bai YP, Huang X, Gao ZF, Meng LH, Huang YD, Ma J, Mater. Chem. Phys., 116(2-3), 323, 2009
  20. Lee SM, Ha KR, Polymer(Korea), 38(2), 1, 2013
  21. Li GY, Wang PM, Zhao X, Carbon, 43(6), 1239, 2005
  22. Jimeno A, Goyanes S, Eceiza A, Kortaberria G, Mondragon I, Corcuera MA, J. Nanosci. Nanotechnol., 9(10), 6222, 2009
  23. Cui LJ, Geng HZ, Wang WY, Chen LT, Gao J, Carbon, 54, 277, 2013
  24. Yang K, Gu M, Guo Y, Pan X, Mu G, Carbon, 47(7), 1723, 2009
  25. Brindaban CR, Suvendu SD, Alakananda H, ARKIVOC, 7, 76, 2002
  26. Kishor PD, Pawan JT, Rekha SS, Bhalchandra MB, Tetrahedron Lett., 51(33), 4455, 2010
  27. Larkin P, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation, 1st ed., Elsevier, New York, 107, 2011
  28. Faraj AA, Tahar L, Mamdouh AH, Muataz AA, The Arabian Journal for Science and Engineering(AJSE), 35(1), 37, 2010
  29. Socrates G, Infrared Characteristic Group Frequencies: Table and Chart, 2nd ed., John Wiley & Sons, New York, 105, 1994