Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.1, 78-82, 2015
유기 주형 입자를 이용한 소디움 실리케이트로부터 중공형 실리카 입자 제조
Synthesis of Hollow Silica Particles from Sodium Silicate using Organic Template Particles
유기주형(organic template) 입자를 이용하여 소디움실리케이트(sodium silicate)로부터 중공형 실리카(hollow silica) 입자를 제조하였다. 유기주형 입자로는 스티렌 단량체(styrene monomer)로부터 분산중합(dispersion polymerization)에 의해 제조된 폴리스티렌 라텍스(polystyrene latex, PSL) 입자를 사용하였다. 유기주형 입자 제조 시 중합개시제인 2,2'-azobisisobutyronitrile(AIBN)의 주입량을 조절하여 1~3 μm의 크기를 가진 입자를 제조하였다. 생성된 유기주형 입자표면에 졸-겔(sol-gel)법에 의해 소디움실리케이트로부터 생성된 실리카(SiO2) 나노 입자를 코팅하여 PSL/SiO2 코어-쉘 형태의 입자를 제조하였다. 유기용매인 테트라하이드로푸란(tetrahydrofuran, THF)을 이용하여 코어-쉘 입자 내부의 유기주형을 제거 하였다. 코어-쉘 입자 제조 시 용매의 종류 및 pH의 변화에 따라 생성되는 중공형 실리카 입자의 형상을 조사하였다. PSL/SiO2 코어-쉘 입자 제조 시 용매를 에탄올에서 물로 변경했을 때 중공형 실리카 입자가 성공적으로 제조되었으며 낮은 pH 값을 갖는 용매에서 쉘 두께가 균일한 중공형 실리카 입자가 형성되었다. 중공형 실리카 입자의 반사도를 측정한 결과 상용 제품(Insuladd)보다 높은 반사 특성을 보여주었다.
Hollow silica particles were prepared using sodium silicate and organic templates. Polystyrene latex (PSL) particles produced by dispersion polymerization were used as organic templates. PSL particles ranged from 1 μm to 3 μm in diameter were synthesized by adjusting the amount of 2,2'-azobisisobutyronitrile (AIBN). The PSL/SiO2 core-shell particles were prepared by coating of silica nanoparticles originated from sodium silicate using sol-gel method. The organic templates were removed by the organic solvent, tetrahydrofuran (THF). Morphology of hollow silica particles was investigated with respect to types of the reaction medium and pH during the process. By changing the solvent from ethanol to water, hollow silica particles were successfully formed. Hollow silica particles with the uniform shell thickness were produced at low pH as well. The reflectivity of the as-prepared silica particles was measured in the range of the wavelength of UV and visible light. Hollow silica particles showed much better reflective properties than the commercial light reflector, Insuladd.
[References]
  1. Feng Z, Li Y, Niu D, Li L, Zhao W, Chen H, Li L, Gao J, Ruan M, Shi J, Chem. Commun., 44, 2629, 2008
  2. Xu L, Du J, Deng Y, He N, J. Biomed Nanotechnol., 8, 1006, 2012
  3. He N, Deng Y, Xu L, Li Z, Li X, J. Biomed Nanotechnol., 10, 8463, 2010
  4. Hope EG, Sherrington J, Stuart AM, Adv. Synth. Catal., 348, 1635, 2006
  5. Miyao T, Minoshima K, Kurokawa Y, Shinohara K, Shen WH, Naito S, Catal. Today, 132(1-4), 132, 2008
  6. Lay CL, Liu HQ, Wu D, Liu Y, Chem. Eur. J., 16, 3001, 2010
  7. Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J, ACS Nano, 4, 6001, 2010
  8. Chen H, He J, Tang H, Yan C, Chem. Mater., 20, 5894, 2008
  9. Hughes GA, Nanomedicine: Nanotechnology, Biology and Medicine, 1, 22, 2005
  10. Chen H, He J, Tang H, Yan C, Chem. Mater., 20, 5894, 2008
  11. Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY, Acc. Chen. Res., 40, 846, 2007
  12. Yang J, Lee J, Kang J, Lee K, Suh JS, Yoon HG, Huh YM, Haam S, Langmuir, 24(7), 3417, 2008
  13. Lay Cl, Liu HQ, Wu D, Liu Y, Chem. Eur. J., 16, 3001, 2010
  14. Liu C, Ge C, Wang A, Yin H, Ren M, Zhang Y, Yu L, Jiang T, Korean J. Chem. Eng., 28(6), 1458, 2011
  15. Waston DR, Carithers VG, Drown HL, “Hollow Ceramic Balls as Automotive Catalysts Supports,” US Patent, 4, 039, 480, 1977
  16. Kawahashi N, Matijevic E, J. Colloid Interf. Sci., 143, 103, 1991
  17. Kentepozidou A, Kiparissides C, Kotzia F, Kollia C, Spyrellis N, J. Mat. Sci., 31, 1176, 1996
  18. Yang S, Shim SE, Lee H, Kim GP, Choe S, Macromol. Res., 12(5), 519, 2004
  19. Fesmire JE, Augustynowicz SD, Adv. Cryog. Eng., 49, 612, 2004
  20. Allen MS, Baumgartner RG, Fesmire JE, Augustynowicz SD, Adv. Cryog. Eng., 49, 619, 2004
  21. Kim JW, Lee JW, Choi JW, Jang HD, J. Nanosci. Nanotech., 13, 2284, 2013
  22. Kim J, Lee J, Chang H, Choi JW, Jang HD, J. Cryst. Growth, 373, 128, 2013
  23. Heish HL, Quirk RP, “Anionic Polymerization; Principles and Practices,” Academic, NewYork, 1996
  24. Barrett KEJ, “Dispersion Polymerization in Organic Media,” Wiley, London, 1975
  25. Almong Y, Reich S, Levy M, J. Brit, Polym. J., 14, 131, 1982
  26. Corner T, Colloids Surf., 3, 119, 1981
  27. Ober CK, Lok KP, Hari ML, J. Polym. Sci.: Polym. Lett. Ed., 23, 103, 1985
  28. Szwarc M, Levy M, Milkovich R, J. Am. Chem. Soc., 78, 2656, 1956
  29. Hawker CJ, Trends Polym. Sci., 4, 183, 1996
  30. Bao Y, Yang YQ, Ma JZ, J. Colloid Interface Sci., 407, 155, 2013
  31. Gabriel AO, Riedel R, Angew. Chem.-Int. Edit., 36, 384, 1997
  32. He F, Wang X, Wu D, Energy, 67, 6, 2014
  33. Iler RK, “The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry,” Wiley, New York, 1979
  34. Friedlander SK, “Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics,” Oxford University Press, 2000