Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.1, 64-70, 2015
활성탄에 의한 Congo Red의 흡착에 대한 등온선, 동력학 및 열역학적 특성
Isotherm, Kinetic and Thermodynamic Characteristics for Adsorption of Congo Red by Activated Carbon
본 연구는 활성탄에 의한 congo red의 흡착 거동에 대해 회분식 실험을 통해 알아보았다. 흡착변수로 흡착제의 양, pH, 초기농도와 접촉시간과 온도를 사용하였다. 흡착평형자료는 Langmuir, Freundlich, Temkin 및 Dubin-Radushkevich 식에 적용하여 보았다. 평가된 Freundlich 분리계수(1/n)로부터 활성탄에 의한 congo red의 흡착공정이 적절한 처리방법이 될 수 있음을 알았고, Temkin 상수(B)와 Dubinin-Radushkevich 상수(E)로부터 물리흡착공정임을 알았다. 동력학적 실험을 통해 흡착공정이 유사이차반응속도식에 잘 일치함을 알았다. 입상활성탄에 대한 congo red의 흡착공정은 발열반응 (ΔH=42.036 kJ/mol)이었고, Gibbs 자유에너지값(ΔG=-2.414~-4.596 kJ/mol)은 온도가 증가할수록 감소하였다.
Batch experiment studies were carried out for adsorption of congo red using granular activated carbon with various parameters such as activated carbon dose, pH, initial dye concentration, temperature and contact time. Equilibrium experimental data are fitted to the Langmuir, Freundlich, Temkin and Dubin-Radushkevich isotherm equations. From Freundlich’s separation factor (1/n) estimated, adsorption could be employed as effective treatment method for adsorption of congo red from aqueous solution. Base on Temkin constant (B) and Dubinin-Radushkevich constant (E), this adsorption process is physical adsorption. Adsorption kinetics has been tested using pseudo-first order and pseudo second order models. The results followed pseudo second order model with good correlation. Adsorption process of congo red on granular activated carbon was endothermic (ΔH=42.036 kJ/mol) and was accompanied by decrease in Gibbs free energy (ΔG=-2.414 to -4.596 kJ/mol) with increasing adsorption temperature.
[References]
  1. Ahmad R, Kumar R, Appl. Surf. Sci., 257(5), 1628, 2010
  2. Cestari AR, Vieira EFS, Vieira GS, Almeida LE, J. Colloid Interface Sci., 309(2), 402, 2007
  3. Tehrani-Bagha AR, Nikkar H, Mahmoodi NM, Markazi M, Menger FM, Desalination, 266(1-3), 274, 2011
  4. Mittal A, Mittal J, Malviya A, Gupta VK, J. Colloid Interface Sci., 340(1), 16, 2009
  5. Hartono SB, Ismadji S, Sudaryanto Y, Irawaty W, J. Ind. Eng. Chem., 11(6), 864, 2005
  6. Hema M, Arivoli S, Int. J. Phys. Sci., 2(1), 10, 2007
  7. Mozumder MSI, AndIslam MA, Sci. Res., 2(3), 567, 2010
  8. Sandeman SR, Gun'ko VM, Bakalinska OM, Howell CA, Zheng YS, Kartel MT, Phillips GJ, Mikhalovsky SV, J. Colloid Interface Sci., 358(2), 582, 2011
  9. Hou HJ, Zhou RH, Wu P, Wu L, Chem. Eng. J., 211, 336, 2012
  10. Akl MA, Youssef AM, Al-Awadhi MM, J. Anal. Bioanal. Tech., 4(4), 2, 2013
  11. Garg VK, Kumar R, Gupta R, Dyes Pigments, 62, 1, 2004
  12. Namasivayam C, Yamuna RT, J. Chem. Technol. Biotechnol., 53, 153, 1992
  13. Namasivayam C, Kavitha D, Dyes Pigments, 54, 47, 2002
  14. Won SW, Wu GP, Ma H, Liu Q, Yan Y, Cui LZ, Liu C, Yun YS, J. Hazard. Mater., 138(2), 370, 2006
  15. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154(1-3), 337, 2008
  16. Sivakumar P, Palanisamy PN, Int. J. Chem. Tech. Res., 1(3), 502, 2009
  17. Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365, 2009
  18. Zhang Li Y, Zhang C, Jing Y, J. Hazard. Mater., 150, 774, 2008
  19. Samiey B, Toosi A, Central Eur. J. Chem., 8, 906, 2010
  20. Lee JJ, Korean Chem. Eng. Res., 52(4), 486, 2014
  21. Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 98(13), 2590, 2007