Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.1, 57-63, 2015
(H2O-Piperidine-CO2) system에서 piperidine 유도체의 작용기 위치에 따른 이산화탄소 흡수특성 연구
The Effect of Functional Group Position of the Piperidine Derivatives on the CO2 Absorption Characteristics in the (H2O-Piperidine-CO2) System
본 연구에서는 기-액 평형장치와 반응열 측정장치를 이용하여 2-methylpiperidine (2MPD), 3-methylpiperidine (3MPD), 4-methylpiperidine (4MPD) 흡수제의 이산화탄소 흡수특성을 연구하였다. 기-액 평형장치를 이용하여 각 흡수제의 이산화탄소 흡수능을 알아보았고, 흡수평형 후의 흡수액을 핵자기공명장치(nuclear magnetic resonance spectroscopy: NMR)로 분석하여 종 형성을 확인하였다. 추가적으로 반응열 측정장치를 이용하여 흡수능에 따른 반응열을 제시하였다. 실험결과 2MPD, 3MPD, 4MPD 흡수제는 작용기 위치에 따라 다른 특성을 나타내었다. Ortho 위치에 메틸기를 가진 2MPD는 입체장애효과로 인하여 흡수반응에서 특이성이 나타났으나 3MPD와 4MPD는 (H2O-piperidine-CO2) 시스템에서 반응 특이성이 나타나지 않았다.
Absorption characteristics of 2-methylpiperidine (2MPD), 3-methylpiperidine (3MPD) and 4-methylpiperidine (4MPD) absorbents were studied by a vapor-liquid equilibrium (VLE) apparatus and a differential reaction calorimeter (DRC). Using a VLE apparatus, the CO2 loading capacity of each absorbent was estimated. After reaching the absorption equilibrium, nuclear magnetic resonancespectroscopy (NMR) had been conducted to characterize the species distribution of the (H2O-piperidine-CO2) system. Using a DRC, the reaction of heat was confirmed in accordance with the absorption capacity. The unique characteristics of 2MPD, 3MPD and 4MPD absorbents appeared by the position of methyl group. The 2MPD possessing the methyl group at the ortho position showed its hindrance effect during the absorption process; however, piperidine derivatives possessing the meta position and para position did not show its characteristics in H2O-piperidine-CO2 system.
[References]
  1. Thiruvenkatachari R, Su S, An H, Yu XX, Prog. Energy Combust. Sci., 35, 438, 2009
  2. Wall TF, Proc. Combust. Inst., 31, 31, 2007
  3. UME CS, Alper E, Turk. J. Chem., 36, 427, 2012
  4. Yu CH, Huang CH, Tan CS, Aerosol Air Qual. Res., 12, 745, 2012
  5. Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C, Chem. Eng. Res. Des., 89(9A), 1609, 2011
  6. Cho Y, Nam SC, Yoon YI, Moon S, Baek IH, Appl. Chem. Eng., 21(2), 195, 2010
  7. Lee JH, Kwak NS, Lee IY, Jang KR, Jang SG, Lee KJ, Han GS, Oh DH, Shim JG, Korean Chem. Eng. Res., 51(2), 267, 2013
  8. Jin YR, Jung YH, Park SJ, Baek IH, Korean Chem. Eng. Res., 50(1), 35, 2012
  9. Mores P, Rodriguez N, Scenna N, Mussati S, Inter. J. Greenhouse Gas Control., 10, 148, 2012
  10. Stephanie AF, Jason D, Rochelle GT, Inter. J. Greenhouse Gas Control., 4, 756, 2010
  11. Conway W, Wang X, Fernandes D, Burns R, Lawrance G, Puxty G, Maeder M, Environ. Sci. Technol., 46, 7422, 2012
  12. Xie HB, Zhou Y, Zhang Y, Johnson JK, J. Phys. Chem., 114, 11844, 2010
  13. Caplow M, J. Am. Chem. Soc., 90, 6795, 1969
  14. Danckwerts PV, Chem. Eng. Sci., 34, 443, 1979
  15. Vaidya PD, Kenig EY, Chem. Eng. Technol., 30(11), 1467, 2007
  16. Kim YE, Nam SC, Lee Y, Yoon YI, Appl. Chem. Eng., 21(3), 284, 2010
  17. Astarita G, Savage DW, Bisio A, “Gas Treating with Chemical Solvents,” J. Wiley., New York, 1983
  18. Mazinani S, Samsami A, Jahanmiri S, Sardarian A, Chemical Engineering Transactions, 21, 205, 2010
  19. Munoz DM, Portugal AF, Lozano AE, de la Campa JG, de Abajo J, Energy & Environmental Science., 2, 883, 2009
  20. Nogent H, Le Tacon X, J. Loss Prev. Process Ind., 15(6), 445, 2002
  21. Nogent H, Le Tacon X, J. Loss Prev. Process Ind., 16(2), 133, 2003
  22. Sartori G, Savage DW, Ind. Eng. Chem. Fundam., 22, 239, 1983
  23. Astarita G, Marrucci G, Gioia F, Chem. Eng. Sci., 19, 99, 1964
  24. Jiang H, Zhang S, Xu Y, African. J. Pure. Appl. Chem., 3, 126, 2009
  25. Robinson K, McCluskey A, Attalla M, Chem. Phys. Chem., 12, 1088, 2011
  26. Oexmann J, Kather A, Inter. J. Greenhouse Gas Control., 4, 36, 2010