Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.53, No.1, 53-56, 2015
초임계 암모니아를 이용한 p-Phenylenediamine(PPD) 합성 및 특성연구
Synthesis of p-Phenylenediamine (PPD) using Supercritical Ammonia
초임계 암모니아 분위기와 CuI 촉매 하에서 p-Diiodobenzene(PDIB)를 아민화 반응시켜 p-Phenylenediamine(PPD)를 합성하는 방법을 연구하였다. 본 연구에서는 여러 가지 공정변수들이 PPD 생성 수율에 미치는 영향을 알아보기 위하여 반응 온도, 암모니아 초기 주입 양에 따른 반응 압력, 촉매의 유무 및 촉매 주입량, 반응 시간 등을 변화시키면서 이에 따른 PPD 수율 변화를 GC 분석을 통하여 조사하였다. 그 결과, 무촉매 반응 시에는 PPD가 전혀 생성되지 않음을 알 수 있었으며, 반응온도, 반응 압력, 촉매 주입량 및 반응시간이 증가함에 따라 PPD 생성 수율이 증가하는 것을 확인할 수 있었다 단, 반응온도의 경우 250 oC 이상에서는 열분해에 의해 PPD가 감소하여 200 oC가 최적의 온도임을 알 수 있었다. 또한, FT-IR과 1H-NMR 분석을 통하여 아민기의 결합 특성과 PPD의 구조를 확인하였다.
In this study, investigated the synthesis method of p-Phenylenediamine (PPD) by amination of p-Diiodobenzene (PDIB) under supercritical ammonia and CuI catalyst conditions. We examined the effects of various process variables (e.g., reaction temperature, pressure, amount of ammonia inserted, amount of catalyst inserted, and reaction time) on the production yield of PPD by analyzing the Gas Chromatography (GC). The experimental results demonstrated that PPD was not produced under non-catalyst conditions, and PPD production yield increased with increasing temperature, pressure, amount of catalyst inserted, and reaction time. However, for the reaction temperature case, it was found that 200 oC was the optimal temperature, because thermal degradation of PPD occurred above 250 oC. In addition, we confirmed the structure of PPD and the bonding characteristics of the amine group via FT-IR and H-NMR analysis.
[References]
  1. Jang JS, J. Ind. Eng. Chem., 4(3), 437, 1993
  2. Wahab MA, Kim I, Ha CS, J. Polym. Sci. A: Polym. Chem., 42(20), 5189, 2004
  3. Han H, Seo J, Ree M, Pyo SM, Gryte CC, Polimery, 39(13), 2963, 1998
  4. Memeger W, Lazar J, Ovenall D, Leach RA, Mac., 26(14), 3476, 1993
  5. Prokes J, Stejskal J, Krivka I, Tobolkova E, Syn. Met., 102(1), 1205, 1999
  6. Zengel HG, Bergfeld MJ, J. Ind. Eng. Chem., 15(3), 186, 1976
  7. Cho CK, Chung KB, J. Ind. Eng. Chem., 10(8), 1210, 1999
  8. Kim KY, Jin HK, Lee SB, Lee JM, Korean Chem. Eng. Res., 28(2), 230, 1990
  9. Nandakumar MV, Adv. Syn. Cat., 346(8), 954, 2004
  10. Guo X, Rao H, Fu H, Jiang Y, Zhao Y, Adv. Syn. Cat., 348(15), 2197, 2006
  11. Cansell F, Chevalier B, Demourgues A, Etourneau J, Even C, Pessey V, Weill F, J. Mater. Chem., 9(1), 67, 1999
  12. Lee YW, Korean Chem. Eng. Res., 41(6), 679, 2003
  13. Kang SR, Ju CS, Korean Chem. Eng. Res., 43(1), 21, 2005
  14. Tomasko DL, Li HB, Liu DH, Han XM, Wingert MJ, Lee LJ, Koelling KW, Ind. Eng. Chem. Res., 42(25), 6431, 2003
  15. Prabakar SR, Narayanan SS, Ana. Bio. Chem., 386(7-8), 2107, 2006