Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.5, 688-693, 2014
V2O5-WO3/TiO2/SiC 촉매필터의 NO 환원에 SO2와 H2O가 미치는 영향
The Effect of SO2 and H2O on the NO Reduction of V2O5-WO3/TiO2/SiC Catalytic Filter
촉매필터의 NO 환원활성을 조사하기 위하여 SO2와 H2O가 동시 또는 따로 존재하는 조건에서 NO, NH3, air로 구성된 합성가스 분위기에서 그 성능이 측정되었다. 집진성능이 높이 평가된 SiC 세라믹 필터의 기공에 V2O5-WO3/TiO2 촉매를 코팅하여 SCR용 촉매필터를 제작하였다. 260 ℃ 이하의 저온영역에서 반응가스 중에 SO2와 H2O가 각각 또는 동시에 존재할 경우에 이들이 존재하지 않을 때와 비교하여 촉매필터의 활성이 두드러지게 감소하였다. 반면에 320 ℃ 이상의 고온에서는 반응가스 중에 SO2가 포함될 경우 촉매필터의 활성이 증가하여 여과속도 2 cm/s에서 500 ppm의 NO를 99.8% 이상 질소로 환원시켰다. 특히 반응가스 중에 물이 존재할 때는 380 ℃의 고온까지 99% 이상의 NO 전 환율이 유지되었다. 이와 같은 물의 영향은 물이 고온에서 NH3 산화반응을 둔화시켜서 N2O 생성으로 가는 반응을 억제시키기 때문으로 해석되었다. SO2와 H2O가 공존하는 반응가스에서 100시간 운전 후에도 촉매필터의 초기 NO 환원활성이 유지되었다. 따라서 촉매필터가 분진과 NOx 가스를 동시에 처리할 수 있는 우수한 산업촉매로써 활용될 수 있을 것으로 사료되었다.
For investigating NO reduction activity of an catalytic filter, the catalytic performance was measured under the presence of SO2 and H2O, respectively or simultaneously in the simulation gas composed of NO, NH3, and air. The catalytic filter was prepared by coating V2O5-WO3/TiO2 catalyst on the pore surface of SiC filter element of which the superior performance for the particulate removal was well known. At the temperature below 260 ℃, the catalytic activities were enormously decreased under the presence of SO2 and H2O, respectively or imultaneously, compared with those under the cases of the absence of SO2 and H2O. However, the presence of SO2 promoted the performance of the catalytic filter above 320 ℃ with showing the NO conversion better than 99.8% for the NO inlet concentration of 500 ppm and at the face velocity of 2 cm/s. In particular, the presence of water showed high NO conversion higher than 99% up to high temperature of 380 ℃. This effect of water was explained by the reason that it retarded the ammonia oxidation which is the main step into the formation of N2O. The initial NO reduction activity of the catalytic filter maintained for the duration of 100 hours in the presence of SO2 and H2O. Therefore, it was concluded that the catalytic filter was promisingly useful for the industrial NOx reduction catalyst in order to treat the particulate and NO simultaneously.
[References]
  1. Amiridis MD, Wachs IE, Deo G, Jehng JM, Kim DS, J. Catal., 161(1), 247, 1996
  2. Alemany LJ, Lietti L, Ferlazzo N, Forzatti P, Busca G, Giamello E, Bregani F, J. Catal., 155(1), 117, 1995
  3. Saracco G, Specchia S, Specchia V, Chem. Eng. Sci., 51(24), 5289, 1996
  4. Choi JH, Kim SK, Bak YC, Korean J. Chem. Eng., 18(5), 719, 2001
  5. Choi JH, Kim SK, Ha SJ, Park YO, Korean J. Chem. Eng., 18(4), 456, 2001
  6. Choi JH, Kim JH, Bak YC, Amal R, Scott J, Korean J. Chem. Eng., 22(6), 844, 2005
  7. Kim YA, Choi JH, Scott J, Chiang K, Amal R, Powder Technol., 180(1-2), 79, 2008
  8. Amiridis MD, Wachs IE, Deo G, Jehng JM, Kim DS, J. Catal., 161(1), 247, 1996
  9. Odenbrand CUI, Par LT, Jan G, Brandin GM, Andersson AH, Appl. Catal., 78, 109, 1991
  10. Ham SW, Soh BW, Nam IS, J. Korean Ind. Eng. Chem., 15(4), 373, 2004
  11. Ham SW, Choi H, Nam IS, Kim YG, Ind. Eng. Chem. Res., 34(5), 1616, 1995
  12. Dunn JP, Koppula PR, Stenger HG, Wachs IE, Appl. Catal. B: Environ., 19(2), 103, 1998
  13. Chen JP, Yang RT, J. Catal., 139, 227, 1993
  14. Inomata M, Miyamoto A, Murakami Y, J. Catal., 62, 140, 1980
  15. Takagi M, Kawai T, Soma M, Onishi T.Tamaru K, J. Catal., 50, 441, 1977
  16. Chen JP, Yang RT, J. Catal., 25, 411, 1990
  17. Kobayashi M, Kuma R, Morita A, Catal. Lett., 112(1-2), 37, 2006
  18. Kobayashi M, Hagi M, Appl. Catal. B: Environ., 63(1-2), 104, 2006
  19. Gillespie RJ, Acc. Chem. Res., 1, 202, 1968
  20. Choi JH, Bae MH, Jo YS, Kim JH, “Catalyst Coating Method for Candle Type Ceramic Filter,” Korea patent, 100923024, 2009
  21. Kim JH, Choi JH, Korean Chem. Eng. Res., 51(3), 313, 2013
  22. Schulz K, Durst M, Advantages of an integrated system for hot gas filtration using rigid ceramic element, Filtration & Separation, January/February, 25-28, 1994