Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.5, 678-687, 2014
The Influence of a Second Metal on the Ni/SiC Catalyst for the Methanation of Syngas
The catalytic performance of silicon carbide supported nickel catalysts modified with or without second metal (Co, Cu and Zn) for the methanation of CO has been investigated in a fixed-bed reactor using a feed consisting of 25% CO and 75% H2 without any diluent gas. It has been found that the introduction of Co species can clearly improve the catalytic activity of Ni/SiC catalyst, whereas the addition of Cu or Zn can result in a significant decrease in the catalytic activity. The characterizations by means of XRD, TEM, XPS, CO-TPD and H2-TPR indicate that the addition of Co could decrease the particle size of active metal, increase active sites on the surface of methanation catalyst, improve the chemisorption of CO and enhance the reducibility of methanation catalysts. Additionally, the special interaction between Co species and Ni species is likely favorable for the dissociation of adsorbed CO on the surface of catalyst, and this may also contribute to the high activity of 5Co-Ni/SiC catalyst for CO methanation reaction. For 5Cu-Ni/SiC catalyst and 5Zn-Ni/SiC catalyst, Cu and Zn species could cover partial nickel particles and decrease the chemisorption amount of CO. These could be responsible for the low methanation activity. In addition, a 150h stability test under 2 MPa and 300 ℃ showed that 5Co-Ni/SiC catalyst was very stable for CO methanation reaction.
[References]
  1. Kustov AL, Frey AM, Larsen KE, Johannessen T, Norskov JK, Christensen CH, Appl. Catal. A: Gen., 320, 98, 2007
  2. Kopyscinski J, Schildhauer TJ, Biollaz SMA, Fuel, 89(8), 1763, 2010
  3. Rostrup-Nielsen JR, Pedersen K, Sehested J, Appl. Catal. A: Gen., 330, 134, 2007
  4. Vitasari CR, Jurascik M, Ptasinski KJ, Energy, 36(6), 3825, 2011
  5. Liu ZH, Chu BZ, Zhai XL, Jin Y, Cheng Y, Fuel, 95(1), 599, 2012
  6. van der Meijden CM, Veringa HJ, Rabou LPLM, Biomass Bioenerg., 34(3), 302, 2010
  7. Grobl T, Walter H, Haider M, Appl. Energy, 97, 451, 2012
  8. Wirth S, Markard J, Technological Forecasting and Social Change, 78, 635, 2011
  9. Shen WJ, Okumura M, Matsumura Y, Haruta M, Appl. Catal. A: Gen., 213(2), 225, 2001
  10. Takenaka S, Shimizu T, Otsuka K, Int. J. Hydrog. Energy, 29(10), 1065, 2004
  11. Panagiotopoulou P, Kondarides DI, Verykios XE, Appl. Catal. A: Gen., 344(1-2), 45, 2008
  12. Panagiotopoulou P, Kondarides DI, Verykios XE, Appl. Catal. B: Environ., 88(3-4), 470, 2009
  13. Kowalczyk Z, Stolecki K, Rarog-Pilecka W, Miskiewicz E, Wilczkowska E, Karpiniski Z, Appl. Catal. A: Gen., 342(1-2), 35, 2008
  14. Utaka T, Takeguchi T, Kikuchi R, Eguchi K, Appl. Catal. A: Gen., 246(1), 117, 2003
  15. Tsai YT, Mo XH, Goodwin JG, J. Catal., 285(1), 242, 2012
  16. Sabatier P, Senderens JB, Acad. Sci., 134, 514, 1902
  17. Morl T, Masuda H, Imal H, J. Phys. Chem., 86, 2753, 1982
  18. Fujita SI, Takezawa N, Chem. Eng. J., 68(1), 63, 1997
  19. Mo XH, Tsai YT, Gao J, Mao DS, Goodwin JG, J. Catal., 285(1), 208, 2012
  20. Znak L, Stolecki K, Zielinski J, Catal. Today, 101(2), 65, 2005
  21. Hu X, Lu GX, Green Chem., 11, 724, 2009
  22. Gao J, Mo XH, Chien ACY, Torres W, Goodwin JG, J. Catal., 262(1), 119, 2009
  23. Wu RF, Zhang Y, Wang YZ, Gao CG, Zhao YX, J. Fuel Chem. Tech., 37, 578, 2009
  24. Wang YZ, Wu RF, Zhao YX, Catal. Today, 158(3-4), 470, 2010
  25. Kraselcuk R, Isli AI, Aksoylu AE, Onsan ZI, Appl. Catal. A: Gen., 192(2), 263, 2000
  26. Kip BJ, Smessts PAT, Grondelle J, Van Prins R, Appl. Catal., 33, 181, 1987
  27. Ishihara T, Eguchi K, Arai H, Appl. Catal., 30, 225, 1987
  28. Wang JJ, Chernavskii PA, Khodakov AY, Wang Y, J. Catal., 286, 51, 2012
  29. Zhao JJ, Zong ZM, Xie HS, Liu T, Li JJ, Wang TT, Wei XY, Mining Science and Technology (China), 20, 296, 2010
  30. Boellaard E, van de Scheur FT, van der Kraan AM, Geus JW, Appl. Catal. A: Gen., 171(2), 333, 1998
  31. Fujitani T, Nakamura I, Ueno S, Uchijima T, Nakamura J, J. Appl. Surf. Sci., 122, 583, 1997
  32. Lin MG, Fang KG, Li DB, Sun YH, Catal. Commun., 9, 1869, 2008
  33. Yu Y, Jin GQ, Wang YY, Guo XY, Fuel Process. Technol., 92(12), 2293, 2011
  34. Jin GQ, Guo XY, Micropor. Mesopor. Mater., 60, 207, 2003
  35. Ni YH, Wang F, Liu HJ, Liang YY, Yin G, Hong JM, Ma X, Xu Z, Inorg. Chem. Commun., 6, 1406, 2003
  36. Zhang JG, Wang H, Dalai AK, J. Catal., 249(2), 300, 2007
  37. Czekaj L, Loviat F, Raimondi F, Wambach J, Biollaz S, Wokaun A, Appl. Catal. A: Gen., 329, 68, 2007
  38. Yu ZB, Qiao MH, Li HX, Deng JF, Appl. Catal. A: Gen., 163(1-2), 1, 1997
  39. Petrov K, Will G, J. Mater. Sci. Lett., 6, 1153, 1987
  40. Engbæk J, Lytken O, Nielsen JH, Chorkendorff I, Surf. Sci., 602, 733, 2008
  41. Hayes RE, Thomas WJ, Hayes KE, Catalysis, 92, 312, 1985
  42. Mo XH, Tsai YT, Gao J, Mao DS, Goodwin JG, J. Catal., 285(1), 208, 2012
  43. Yu Y, Jin GQ, Wang YY, Guo XY, Catal. Commun., 31, 5, 2013
  44. Xu JK, Zhou W, Li ZJ, Wang JH, Ma JX, Int. J. Hydrog. Energy, 34(16), 6646, 2009
  45. Li L, Lu P, Yao Y, Ji WJ, Catal. Commun., 26, 72, 2012
  46. Zhu JQ, Peng XX, Yao L, Shen J, Tong DM, Hu CW, Int. J. Hydrog. Energy, 36(12), 7094, 2011
  47. Hernandez RP, Galicia GM, Anaya DM, Palacios J, Chavez CA, Alatorre JA, Int. J. Hydrogen Energy, 38, 4569, 2008
  48. Lee JH, Lee EG, Joo OS, Jung KD, Appl. Catal. A: Gen., 289, 1, 2004
  49. Boellaard E, van de Scheur FT, van der Kraan AM, Geus JW, Appl. Catal. A: Gen., 171(2), 333, 1998
  50. Chen JL, Qiao YH, Li YD, Appl. Catal. A: Gen., 337(2), 148, 2008