Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.5, 667-671, 2014
SiO2 나노입자가 분산된 TiO2 나노섬유의 제작 및 광촉매 특성 분석
Fabrication and Photocatalytic Activity of TiO2 Nanofibers Dispered with Silica Nanoparticles
본 연구에서는 전구체 각각의 독립제어가 가능한 이성분계 금속산화물을 얻기 위해 졸-겔법으로 합성한 실리카 나노입자를 TiO2 전구체와 교반시켜 전기방사법을 이용하여 실리카가 고르게 분산된 TiO2 나노섬유를 성공적으로 제작하였다. 제작된 나노섬유는 FE-SEM, XRD, EDS를 이용해 구조적 특성분석과 UV-VIS, 광촉매 반응기를 통해 광촉매 특성 분석을 하였다. 그 결과, 실리카가 분산된 TiO2 나노섬유는 실리카가 분산되지 않은 TiO2 나노섬유 보다 광촉매효율이 10% 가량 향상되었다. 이는 실리카 나노입자가 첨가됨으로써 TiO2가 흡수하지 못하는 380~440 nm 가시광선 영역을 흡수하여 광학적 특성 향상되었으며 Ti와 Si 두 금속산화물간에 Brønsted acid site가 생성되어 OH 라디칼을 증가시킴으로써 광조사에 의해 여기된 전자를 잡아 재결합 손실을 억제하는 역할을 하여 화학적 특성이 개선되어 광촉매 효율이 증가되었을 것으로 사료된다.
In this study, we suggest a facile method to control conditions of single component independently when preparing consisting two-component metal oxides nanofiber by simply dispersing nanoparticles in precursor solution. The well dispersed SiO2 nanoparticles in TiO2 nanofibers were successfully synthesized through a simple electrospinning process. The as-synthesized nanodfibers were investigated via FE-SEM, XRD and EDS for structural studies, furthermore, the analysis of UV-VIS and photocatalytic activity were carried out for demonstrate the effect of SiO2 nanoparticles dispersed in TiO2 nanofibers. As a result, TiO2 nanofibres dispersed with SiO2 nanoparticles have enhanced photocatalytic activity than that of TiO2 nanofibres only. In this strategy, the introduction of SiO2 nanoparticles in TiO2 nanofibers were attribute to enlarge absorption in the visible region (380~440 nm). Additionally, Brønsted acid sites generated in each metal oxide of Ti and Si increase OH radicals efficiently as well as it limit recombination loss by holding photogenerated electrons for high efficient photocatalytic activity.
[References]
  1. Kim JH, Clean Technol., 19(3), 191, 2013
  2. Watthanaarun J, Pavarajarn V, Supaphol P, Sci. Technol. Adv. Mater., 6(3-4), 240, 2005
  3. Hou ZY, Li XJ, Li CX, Dai YL, Ma PA, Zhang X, Kang XJ, Cheng ZY, Lin J, Langmuir, 29(30), 9473, 2013
  4. Joo JB, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin Y, Energy Environ. Sci., 5, 6321, 2012
  5. Lou Z, Li F, Deng J, Wang L, Zhang T, ACS applied materials & interfaces, 5, 12310, 2013
  6. Cavaliere S, Subianto S, Savych I, Jones DJ, Roziere J, Energy Environ. Sci., 4, 4761, 2011
  7. Choi KI, Lee HS, Park JY, Choi DY, Hwang CH, Lee IH, Hwa CM, Mater. Lett., 112, 113, 2013
  8. Cavaliere S, Subianto S, Savych I, Tillard M, Jones DJ, Roziere J, J. Phys. Chem. C., 117(36), 18298, 2013
  9. Kim EY, “Preparation and Characterization of TiO2 Nanoparticles and Films with Various Method,” Dissertation M, Inha University, 2006
  10. Alijani S, Moghaddam AZ, Vaez M, Towfighi J, Korean J. Chem. Eng., 30(10), 1855, 2013
  11. Miao YE, Wang R, Chen D, Liu Z, Liu T, ACS applied materials & interfaces, 4(10), 5353, 2012
  12. Ya J, An L, Liu Z, Lei E, Zhao W, Zhao D, Liu C, Korean J. Chem. Eng., 29(6), 731, 2012
  13. Jung KY, Park SB, Appl. Catal. B: Environ., 25(4), 249, 2000
  14. Ai G, Sun WT, Zhang YL, Peng LM, Chem. Commun., 47, 6608, 2011