Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.5, 638-646, 2014
친환경 착제가 적용된 modified Fenton 공정을 이용한 BTEX로 오염된 지하수의 복원
BTEX-contaminated Groundwater Remediation with Modified Fenton Reaction using Environmental Friendly Chelating Agent
본 연구에서는 modified Fenton 공정에서 Fe(II)과 Fe(III)에 대한 유·무기 착제의 효율성 평가를 위해 BTEX(benzene, toluene, ethylbenzene, xylene) 분해효율을 관찰하였다. 적용된 유·무기착제의 종류는 구연산과 피로인산을 선정하였다. Fe(III)과 구연산이 적용되어진 modified Fenton 공정에서, 구연산의 농도가 증가할수록 BTEX의 분해율이 감소하였지만, 피로인산의 경우에는 농도가 증가할수록 BTEX의 분해율이 증가하였다. 또한 Fe(III)이 적용되어진 modified Fenton 공정에서 무기착제인 피로인산이 적용되어진 경우, 유기착제인 구연산이 적용되어진 경우보다 상대적으로 높은 BTEX의 분해율을 나타내었다. Fe(II)에 유·무기 착제가 적용되어진 modified Fenton 공정을 비교한 결과, Fe(II)과 구연산의 몰비가 1:1일 때 pH 변화를 최소화시킴과 동시에 BTEX의 높은 분해율을 보였다. 결과적으로 과산화수소의 효율성, 철 침전물 생성여부, 오염물질 분해율 등이 고려되어질 때, 100 ppm의 벤젠분해를 위한 최적 Fe(II), 구연산 그리고 과산화수소의 농도 조건은 7 mM/7 mM/500 mM였다.
The effect of in-organic chelating agents with Fe(II) and Fe(III) in modified Fenton was evaluated to degradation BTEX (benzene, toluene, ethylbenzene, xylene). Citric acid and pyrophosphate were used in experimentals and an optimum chelating agent for BTEX degradation was determined. In H2O2/Fe(III)/citric acid, degradation of BTEX was decreased when concentration of citric acid was increased. In H2O2/Fe(III)/pyrophosphate, degradation of BTEX was increased when concentration of pyrophosphate was increased and degradation for BTEX was relatively high compared with H2O2/Fe(III)/citric acid. In H2O2/Fe(II)/chelating agents, degradation for BTEX was high and pH variation was minimized when molar ratio of Fe(II) and citric acid was 1:1. Optimum molar concentration of Fe(II), citric acid and H2O2 were 7 mM, 7mM and 500 mM for degradation of 100 mg/L of benzene to obtain best efficiency of H2O2, least precipitation of iron and best degradation.
[References]
  1. Liang C, Huang CF, Chen YJ, Water Res., 42, 4091, 2004
  2. Lee Y, Bae S, Lee W, Korean J. Chem. Eng., 29(6), 769, 2012
  3. Watts RJ, Bottenberg BC, Hess TF, Jensen MD, Teel AL, Environ. Technol., 33, 3432, 1999
  4. Sun Y, Pignatello JJ, J. Agric. Food Chem., 40(2), 322, 1992
  5. Sillanpaa M, Pirkanniemi K, Environ. Technol., 22, 791, 2001
  6. Xu X, Thomson NR, Chemosphere, 69(5), 755, 2007
  7. Rastogi A, Al-Abed SR, Dionysiou DD, Water Res., 43, 684, 2009
  8. Wang X, Brusseau ML, Environ, Toxicol. Chem., 17(9), 1689, 1998
  9. Francis AJ, Dodge CJ, Environ. Sci. Technol., 32(24), 3993, 1998
  10. Liang C, Bruell CJ, Marley MC, Sperry KL, Chemosphere, 55, 1225, 2004
  11. Kim JW, Korean Chem. Eng. Res., 50(5), 879, 2012
  12. Venny, Gan SY, Ng HK, Chem. Eng. J., 180, 1, 2012
  13. Kang N, Hua I, Chemosphere., 61, 909, 2005
  14. Do SH, Kwon YJ, Kong SH, J. Hazard. Mater., 191(1-3), 19, 2011
  15. Kong SH, Watts RJ, Choi JH, Chemosphere, 37, 1473, 1998
  16. Kwan WP, Voelker BM, Environ. Sci. Tech., 36, 1467, 2002
  17. Li Y, Bachas LG, Bhattacharyya D, Environ Eng Sci., 22, 756, 2005
  18. Lindsey ME, Tarr MA, Environ. Sci. Technol., 34, 444, 2000
  19. Xue XF, Hanna K, Despas C, Wu F, Deng NS, J. Mol. Catal. A-Chem., 311(1-2), 29, 2009
  20. Katsumata H, Kaneco S, Suzuki T, Ohta K, Yobiko Y, J. Photoch. Photobio. A., 180, 38, 2006
  21. Hong J, Lu S, Zhang C, Qi S, Wang Y, Chemosphere., 84, 1542, 2011