Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.5, 558-563, 2014
PEMFC MEA 제조 방법에 따른 성능 및 내구성
Performance and Durability of PEMFC MEAs Fabricated by Various Methods
고분자 전해질 연료전지의 성능과 내구성에 미치는 막 전극 접합체(MEA) 제조방법의 영향에 대해 연구하기 위해 닥터 블레이드 방법, 스프레이 방법, 스크린 프린트 방법 그리고 스크린 프린트+스프레이 방법에 의해 MEA를 제조하였다. 제조된 MEA를 체결한 단위전지의 성능을 측정해 각 MEA의 초기 성능을 비교하였다. 10초간 0.6V 일정전압 유지 후 0.9 V에서 10초간 유지하는 전극 열화 가속 시험(AST)을 각 MEA 적용해 내구성을 시험하였다. 전극 열화 가속 시험 6,000 사이클 전 후 I-V 곡선, 임피던스, 순환 전압측정법(CV), 선형쓸음 전기량측정법(LSV), 투과전자현미경 (TEM) 등을 측정하였다. 닥터 블레이드 방법에 의해 제조한 MEA의 초기 성능이 제일 높았고, 스크린 프린트+스프레이 방법에 의해 제조한 MEA가 제일 낮은 열화 속도를 보였다.
To study the effects of fabrication methods on the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs), membrane-electrode assemblies (MEAs) were fabricated using a Dr blade method, a spray method, screen print method and screen print + spray method. The performance of single cells assembled with the prepared MEAs were initially measured and compared. Electrode accelerated stress testing (AST) involving a potentiostatic stepwave with 10 s at 0.6 V followed by 30 s at 0.9 V was applied to test durability of MEAs. Before and after 6,000cycles of the AST, I-V curves, impedance spectra, cyclic voltammograms, linear sweep voltammetry (LSV) and transmission electron microscope (TEM) were measured. Under the operating conditions, the Dr Blde MEA exhibited the highest initial performance. After electrode accelerated stress testing, screen print + spray MEA showed lowest degradation rate.
[References]
  1. Endoh E, Terazono S, Widjaja H, Takimoto Y, Electrochem. Solid-state Lett, 7, 209, 2004
  2. Prasanna M, Cho EA, Lim TH, Oh IH, Electrochim. Acta, 53(16), 5434, 2008
  3. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487, 2011
  4. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68, 2013
  5. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electochem. Soc, 140, 2872, 1993
  6. Cheng X, Chen L, Peng C, Chen Z, Zhang Y, Fan Q, J. Electrochem. Soc, 151, 48, 2004
  7. Schulze M, Schneider A, Gulzow E, J. Power Sources, 127(1-2), 213, 2004
  8. Xie J, Wood DL, More KL, Atanassov P, Borupa RL, J. Electrochem. Soc., 152, 1011, 2005
  9. Cheng TTH, Rogers E, Young AP, Ye S, Colbow V, Wessel S, J. Power Sources, 195, 7985, 2011
  10. Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P, J. Electrochem. Soc., 141(10), 2659, 1994
  11. Akita T, Taniguchi A, Maekawa J, Sirorna Z, Tanaka K, Kohyama M, Yasuda K, J. Power Sources, 159(1), 461, 2006
  12. Zhai Y, Zhang H, Xing D, Shao Z, J. Power Sources, 164, 126, 2006
  13. Rajalakshmi N, Dhathathreyan KS, Chem. Eng. J., 129(1-3), 31, 2007