Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.4, 544-552, 2014
인도네시아 갈탄의 촤-CO2 촉매가스화 반응특성연구
Kinetic Study on Char-CO2 Catalytic Gasification of an Indonesian lignite
본 연구는 인도네시아 갈탄인 로토(Roto) 탄의 촤(char)-CO2 촉매가스화 kinetic 분석을 열중량분석기(thermogravimetric analysis, TGA)를 이용하여 수행하였다. 촉매는 Na2CO3, K2CO3, CaCO3 및 천연광물 촉매로 dolomite을 선정하였으며, 석탄과 촉매의 물리적 혼합을 통하여 촤를 제조하였다. 촤-CO2 촉매가스화반응은 850 oC에서 CO2 농도가 60 vol%, 촉매 함량은 Na2CO3를 7 wt% 혼합할 때 가장 빠른 탄소전환율을 보여주었다. 750~900 ℃ 등온조건에서 촤-CO2 촉매 가스화 반응결과, 온도가 증가할수록 탄소전환율 속도가 빨라졌으며, 기-고체 반응모델 shrinking core model(SCM), volumetric reaction model(VRM), modified volumetric reaction model(MVRM)을 실험결과에 적용하였을 때, MVRM이 로토 탄의 가스화반응 거동을 잘 예측하였다. 특히 Arrhenius plot을 통한 활성화에너지는 Na2CO3와 K2CO3를 혼합한 촤의 활성화에너지가 각각 67.03~77.09 kJ/mol, 53.14~67.99 kJ/mol으로 우수한 촉매 활성을 보여주었다.
In this study, We have investigated the kinetics on the char-CO2 gasification reaction. Thermogravimetric analysis (TGA) experiments were carried out for char-CO2 catalytic gasification of an Indonesian Roto lignite. Na2CO3, K2CO3, CaCO3 and dolomite were selected as catalyst which was physical mixed with coal. The char-CO2 gasification reaction showed rapid an increase of carbon conversion rate at 60 vol% CO2 and 7 wt% Na2CO3 mixed with coal. At the isothermal conditions range from 750 oC to 900 ℃, the carbon conversion rates increased as the temperature increased. Three kinetic models for gas-solid reaction including the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) were applied to the experimental data against the measured kinetic data. The gasification kinetics were suitably described by the MVRM model for the Roto lignite. The activation energies for each char mixed with Na2CO3 and K2CO3 were found a 67.03~77.09 kJ/mol and 53.14~67.99 kJ/mol.
[References]
  1. Kang SH, Lee SJ, Jung WH, Chung SW, Yun Y, Jo SH, Park YC, Baek JI, Korean J. Chem. Eng., 30(1), 67, 2013
  2. Gong S, Zhu X, Kim Y, Song B, Yang W, Moon W, Byoun Y, Korean Chem. Eng. Res., 48(1), 80, 2010
  3. Lee S, Kim S, Korean Chem. Eng. Res., 46(3), 443, 2008
  4. Kim YT, Seo DK, Hwang J, Korean Chem. Eng. Res., 49(3), 372, 2011
  5. Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161, 2001
  6. Ye DP, Agnew JB, Zhang DK, Fuel, 77(11), 1209, 1998
  7. Trommer D, Steinfeld A, Energy Fuels, 20(3), 1250, 2006
  8. Sun ZQ, Wu JH, Zhang DK, Energy Fuels, 22(4), 2160, 2008
  9. Spiro CL, McKee DW, Kosky PG, Lamby EJ, Fuel, 62(2), 180, 1983
  10. Park ST, Choi YT, Sohn JM, J. Ind. Eng. Chem., 22, 312, 2011
  11. Korea Resource Corporation, “State of Mineral Reserves,” 20-21, 2009
  12. Kim YT, Seo DK, Hwang JH, Journal of the Korean Society of Combustion, 15(2), 41, 2010
  13. Park JY, Lee DK, Hwang SC, Kim SK, Lee SH, Yoon SK, Yoo JH, Lee SH, Rhee YW, Clean Technol., 19(3), 306, 2013
  14. Wen CY, Ind. & Eng. Chem., 60(9), 34, 1968
  15. Ishida M, Wen CY, AIChE J., 14(2), 311, 1968
  16. Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25(1), 1985
  17. Jaffri GER, Zhang JY, Chin. J. Chem. Eng., 16(4), 575, 2008
  18. Li S, Cheng Y, Fuel, 74(3), 456, 1995
  19. Choi YK, Moon SH, Lee HI, Lee WY, Lee HK, Korean Chem. Eng. Res., 30(4), 415, 1992
  20. Mckee DW, Fuel, 62(2), 170, 1983
  21. Dutta S, Wen CY, Belt RJ, Ind. Eng. Chem, Process Des. Dev., 16(1), 20, 1977
  22. Song BH, Kang SK, Kim SD, Korean Chem. Eng. Res., 30(6), 749, 1992
  23. Wen WY, Catal. Rev., 22(1), 1, 1980
  24. Wood BJ, Fleming RH, Wise H, Fuel, 63(11), 1600, 1984
  25. Pigford RL, Sliger G, Ind. Eng. Chem. Process Des. Dev., 12(1), 85, 1973
  26. Elliott, Anderson M, “Chemistry of Coal Utilization. Second Supplementary Volume,”, 1981
  27. Ahn DH, Gibbs BM, Ko KH, Kim JJ, Fuel, 80(11), 1651, 2001
  28. Zhang LX, Huang JJ, Fang YT, Wang Y, Energy Fuels, 20(3), 1201, 2006
  29. Tangsathitkulchai C, Junpirom S, Katesa J, Engineering Journal, 17(1), 13, 2012
  30. McKee DW, Carbon, 20(1), 59, 1982
  31. Sams DA, Talverdian T, Shadman F, Fuel, 64, 1208, 1985
  32. Li S, Cheng Y, Fuel, 74(3), 456, 1995