Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.4, 538-543, 2014
이산화지르코늄과 상호작용하는 금 표면 위의 글루타싸이온층 표면 물성
Surface Properties of Glutathione Layer Formed on Gold Surfaces Interacting with ZrO2
이산화지르코늄 표면에 흡착되는 금 입자의 분포 또는 그 반대 경우의 분포에 영향을 끼칠 수도 있는 정전기적 상호작용과 금 입자를 코팅한 Glutathione층의 표면물성을 규명하였다. 이를 위하여, 원자힘현미경(AFM)으로 Glutathione 층 표면과 이산화지르코늄표면 사이의 표면힘을 염 농도와 pH 값에 따라 측정하였다. 측정된 힘은 Derjaguin-Landau-Verwey-Overbeek(DLVO) 이론으로 해석되어 표면의 전하밀도와 포텐셜들이 정량적으로 산출되었다. 이 특성들이 염농도와 pH에 대하여 나타내는 의존성을 질량보존의 법칙으로 기술하였다. pH 8 조건에서 실험으로 산출된 표면 특성의 염 농도 의존성은 이론적으로 예측했던 결과와 일치하는 것으로 관찰되었다. Glutathione 층의 표면이 이산화지르코늄 표면보다 높은 전하밀도와 포텐셜을 갖는 것이 발견되었는데, 이는 Glutathione 층의 이온화-기능-그룹에 기인한 것으로 생각된다.
It is investigated that that the physical properties of Glutathione layer formed on gold surfaces may make an effect on the distribution of either gold particle adsorbed to the ZrO2 surface or vice versa with the adjustment of the electrostatic interactions. For the investigation, the atomic force microscope (AFM) was used to measure the surface forces between the surfaces as a function of the salt concentration and pH value. The forces were quantitatively analyzed with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to estimate the surface potential and charge density of the surfaces for each condition of salt concentration and pH value. The estimated-value dependence on the salt concentration was described with the law of mass action, and the pH dependence was explained with the ionizable groups on the surface. The salt concentration dependence of the surface properties, found from the measurement at pH 4 and 8, was consistent with the prediction from the law. It was found that the Glutathione layer had higher values for the surface charge densities and potentials than the zirconium dioxide surfaces at pH 4 and 8, which may be attributed to the ionized-functional-groups of the Glutathione layer.
[References]
  1. Soolaman DM, Yu HZ, J. Phys. Chem. C, 111, 14157, 2007
  2. Hugon A, Delannoy L, Louis C, Gold Bull., 41, 127, 2008
  3. Zhang X, Shi H, Xu BQ, J. Catal., 279(1), 75, 2011
  4. Wang CM, Fan KN, Liu ZP, J. Am. Chem. Soc., 129(9), 2642, 2007
  5. Kwak JH, Han GY, Bae JW, Yoon KJ, Korean J. Chem. Eng., 31(6), 961, 2014
  6. Kim MY, Seo G, Park JH, Shin CH, Kim ES, Korean Chem. Eng. Res., 49(1), 1, 2011
  7. Arrii S, Morfin F, Renouprez AJ, Rousset JL, J. Am. Chem. Soc., 126(4), 1199, 2004
  8. Zhang X, Wang H, Xu BQ, J. Phys. Chem. B, 109(19), 9678, 2005
  9. Kamat PV, J. Phys. Chem. C, 111, 2834, 2007
  10. Valden M, Lai X, Goodman DW, Science, 281(5383), 1647, 1998
  11. Sakurai H, Tsubota S, Haruta M, Appl. Catal. A-General, 102, 125, 1993
  12. Li X, Fu J, Steinhart M, Kim DH, Knoll W, Bull. Korean Chem. Soc., 28, 1015, 2007
  13. Schmid G, Chem. Rev., 92, 1709, 1992
  14. Noh J, Park H, Jeong Y, Kwon S, Bull. Korean Chem. Soc., 27, 403, 2006
  15. Dasog M, Scott RWJ, Langmuir, 12, 3381, 2007
  16. Sandhyarani N, Pradeep T, Chem. Phys. Lett., 338(1), 33, 2001
  17. Brewer NJ, Rawsterne RE, Kothari S, Leggett GJ, J. Am. Chem. Soc., 123(17), 4089, 2001
  18. Binnig G, Quate C, Gerber G, Phys. Rev. Lett., 56, 930, 1986
  19. Derjaguin BV, Landau L, Acta Physiochem. URSS, 14(11), 633, 1941
  20. Cleveland JP, Manne S, Bocek D, Hansma PK, Rev. Sci. Instrum., 64(2), 403, 1993
  21. Derjaguin B, Trans. Faraday Soc., 35(3), 203, 1940
  22. Israelachvili JN, Adams GE, J. Chem. Soc. Faraday Trans., 74, 975, 1978
  23. Shubin VE, Kekicheff P, J. Colloid Interface Sci., 155(1), 108, 1993
  24. Parker JL, Christenson HK, J. Chem. Phys., 88(12), 8013, 1988
  25. O'Shea SJ, Welland ME, Pethica JB, Chem. Phys. Lett., 223(4), 336, 1994
  26. Derjaguin BV, Kolloid Z., 69, 155, 1934
  27. Hartmann U, Phys. Rev. B, 43, 2404, 1991
  28. Israelachivili JN, Intermolecular & Surface Forces, Academic Press, New York, 183-192, 1991
  29. Shin H, Agarwal M, de Guire MR, Heuer AH, Acta Mater., 46, 801, 1998
  30. Verwey EJW, Overbeek JTG, Theory of the Stability of Lyophobic Colloids, Elsevier, New York, 51-63, 1948
  31. Hogg R, Healy TW, Fuersten DW, Trans. Faraday Soc., 62(522), 1638, 1966
  32. Hunter RJ, Foundations of Colloid Science, Oxford University Press, Oxford, U.K., 396-417, 1987
  33. Chan DYC, Pashley RM, White LR, J. Colloid Interface Sci., 77(1), 283, 1980
  34. Parker JL, Prog. Surf. Sci., 47(3), 205, 1994
  35. Park JW, Ahn DJ, Colloids & Surf. B: Biointerfaces, 62(1), 157, 2008
  36. Ducker WA, Senden TJ, Pashley RM, Nature, 353(6341), 239, 1991
  37. Horn RG, Smith DT, Haller W, Chem. Phys. Lett., 162(4-5), 404, 1989
  38. Choi JY, Kim DK, J. Sol-Gel Sci. Tech., 158, 231, 1999
  39. Schultz M, Grimm St, Burckhardt W, Solid States Ionics, 63, 18, 1993
  40. Pashley RM, J. Colloid Interface Sci., 83(2), 531, 1981