Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.4, 459-466, 2014
수소 생산을 위한 SI Cycle 공정에서의 중간 열교환 공정 모사 연구
A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production
열화학적인 수소 생산 공정 중 하나인 S-I Cycle은 요오드와 황을 이용한 수소 생산 공정으로써 물 분자로부터 수소분자를 얻어내는 순환 공정이다. 수소 생산 공정에 열을 공급하고자 하는 초고온 원자로(VHTR; Very High Temperature Reactor)는 원자로에서 수소 생산 공정으로 방사능 없이 안전하게 열을 전달하기 위하여 중간열교환기(IHX; Intermediate Heat Exchanger)가 필요하다. 본 연구에서는 수소 생산공정과 초고온 원자로간의 중간 열교환 공정을 모사하여 운전 압력 및 작동 유체의 변화에 따른 중간 열교환기의 효율을 계산하고 가장 경제적인 중간 열교환기를 설계하기 위한 공정 조건을 도출하였다.
SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions.
[References]
  1. Seo JG, Youn MH, Jung JC, Song IK, Int. J. Hydrog. Energy, 35(13), 6738, 2010
  2. Lemort F, Lafon C, Dedryvere R, Gonbeau D, Int. J. Hydrog. Energy, 31(7), 906, 2006
  3. Huang C, T-Raissi A, Solar Energy, 78(5), 632, 2005
  4. Brown LC, Funk JF, Showalter SK, “Initial Screening of Thermochemical Water-Splitting Cycle for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power,” Report GA-A23373, 2000
  5. Brown LC, Besenbruch GE, “High Efficiency Generation of hydrogen Fuels Using Nuclear Power,” Report GA-A24285, 2002
  6. Kim SY, Go YK, Park CS, Bae KK, Kim YH, Trans. of the Korean Hydrogen and New Energy Society, 23(1), 1, 2012
  7. Jeong H, Kim IH, Kim TH, Choo KY, Bae GG, Korean Chem. Eng. Res., 46(3), 633, 2008
  8. Murphy JE, O'Connell JP, Fluid Phase Equilib., 288(1-2), 99, 2010
  9. Takai T, Nakajiro T, “A Hydrogen Production Experiment by the Thermo-chemical and Electrolytic Hybrid Hydrogen Production in Low Temperature Range-System Viability and Preliminary Thermal Efficiency Estimation,” Japan Atomic Energy Agency, 2008
  10. Brown NR, Seker V, Revankar ST, Downar TJ, Nucl. Eng. Des., 248(1), 1, 2012
  11. Duigou AL, Borgard JM, Larousse B, Doizi D, Allen R, Ewan BC, Priestman GH, Elder R, Devonshire R, Ramos V, Cerri G, Salvini C, Giovannelli A, Maria GD, Corgnale C, eds, Int. J. Hydrogen Energy, 32(11), 1516, 2006
  12. Chang JW, Kim JH, Shin YJ, Youn CO, Lee TH, Lee KY, Kim YW, Chang JH, Transactions of the Korean Nuclear Society Autumn Meeting, 89, 2010
  13. Jung CH, Park JY, Journal of the Korean Ceramic Society, 48(1), 52, 2011
  14. Zwaan SJ, Boer B, Lathouwers D, Kloosterman JL, Ann. Nucl. Energy, 34(2), 83, 2007
  15. Moon GY, Lee SS, Yang GR, Song KH, Korean J. Chem. Eng., 27(2), 474, 2010
  16. Kuchonthara P, Puttasawat B, Piumsomboon P, Mekasut L, Vitidsant T, Korean J. Chem. Eng., 29(11), 1525, 2012