Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.52, No.4, 425-429, 2014
고분자전해질 연료전지에서 기체 크로마토그래프에 의한 수소투과도 측정
Measurement of Hydrogen Crossover by Gas Chromatograph in PEMFC
최근까지 대부분의 PEMFC MEA(Membrnae and Electrode Assembly) 열화 연구는 전극과 전해질 막 각각 분리되어 연구되었다. 그런데 실제 PEMFC 운전조건에서는 전극과 전해질 막은 동시에 열화된다. 동시열화과정에서 전극열화와 전해질 막 열화는 상호 작용한다. 전해질 막의 열화정도를 측정하는데 수소투과도가 많이 사용되고 있다. 그런데 동시 열화가 발생했을 때 선형 쓸음 전기량 측정법(Linear Sweep Voltammetry, LSV)에 의해 수소투과도를 측정하면 전극열화가 수소투과전류를 감소시키는데, LSV 방법이 전극 촉매의 활성 면적에 의존하기 때문이다. 본 연구에서는 전극과 막 동시 열화과정에서 기체 크로마토그래프에 의한 PEMFC 전해질막의 수소투과도를 측정하였다. 기체 크로마토그래프 측정 방법은 전극 상태와 무관하기 때문에 전극과 막 동시 열화 과정에서 수소투과도가 전극 열화 영향을 받지 않음을 확인하였다.
Until a recent day, degradation of PEMFC MEA(membrane and electrode assembly) has been studied, separated with membrane degradation and electrode degradation, respectively. But membrane and electrode were degraded coincidentally at real PEMFC operation condition. During simultaneous degradation, there was interaction between membrane degradation and electrode degradation. Hydrogen permeability was used often to measure degradation of electrolyte membrane in PEMFC. In case of hydrogen permeability measured by LSV(Linear Sweep Voltammetry) method, the degradation of electrode decrease the value of hydrogen crossover current due to LSV methode’s dependence on electrode active area. In this study hydrogen permeability was measured by gas chromatograph(GC) when membrane and electrode degraded at the same time. It was showed that degradation of electrode did not affect the hydrogen permeability measured by GC because of GC methode’s independence on electrode active area.
[References]
  1. Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191, 2005
  2. Perry ML, Fuller TF, J. Electrochem. Soc, 149(7), 59, 2002
  3. Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA, Lamm A (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612, 2003
  4. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872, 1993
  5. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127, 2004
  6. Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrogen Energy, 31, 1838, 2006
  7. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543, 2003
  8. Xie J, Wood III DL, Wayne DN, Zawodinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152, 104, 2005
  9. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41, 2004
  10. Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P, J. Electrochem. Soc., 141(10), 2659, 1994
  11. Akita T, Taniguchi A, Maekawa J, Sirorna Z, Tanaka K, Kohyama M, Yasuda K, J. Power Sources, 159(1), 461, 2006
  12. Zhai Y, Zhang H, Xing D, Shao Z, J. Power Sources, 164, 126, 2006
  13. Bard AJ, Faulkner, Electrochemical Methods, John & Sons, Inc, Canada, 1980
  14. Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z, Electrochim. Acta, 51(26), 5746, 2006
  15. Huang BT, Chatillon Y, Bonnet C, Lapicque F, Leclerc S, Hinaje M, Rae S, Int. J. Hydro. Ener., 38, 543, 2013
  16. Zhai YF, Zhang HM, Zhang Y, Xing DM, J. Power Sources, 169(2), 259, 2007
  17. Lee H, Kim T, Sim W, Kim S, Ahn B, Lim T, Park K, Korean J. Chem. Eng., 28(2), 487, 2011
  18. Song J, Kim S, Ahn B, Ko J, Park K, Korean Chem. Eng. Res., 51(1), 68, 2013
  19. Barbir F, PEM Fuel Cells: Theory and Practice, Elsvier Academic Press, San Diego, 2005