Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.6, 760-765, 2013
액적기반 미세유체장치에서 라이소자임 결정화
Lysozyme Crystallization in Droplet-based Microfluidic Device
액적기반 미세유체 시스템을 이용해 난백단백질인 라이소자임의 결정화실험을 하였다. Flow-focusing 칩을 이용해 water-in-oil 형태의 액적을 만들고 페트리 디쉬와 십자몰드에 넣은 후, 액적 내부에서 라이소자임 수용액과 침전제(NaCl) 사이의 액-액 반응을 관찰하였다. 그리고 수용액의 pH가 4.8일 때와 7.2일 때의 결정형태를 비교하였다. 그 결과, pH 4.8에서는 다면체 또는 판상형의 결정이 형성되었고, pH 7.2에서는 침상형 결정이 생성되었다. pH 4.8, 7.2 두 경우 액적이 홀로 있을 때에는 액적부피가 유지되거나 감소하면서 결정이 형성되었다. 하지만 액적이 서로 인접해 있을 때는 액적사이의 상호작용이 관찰되었고, 두 pH에서 다른 경향성을 보였다. pH 4.8에서는 인접한 액적의 부피에 영향을 주어 한 액적의 부피가 커졌고, 부피가 커진 액적에서 결정이 형성되었다. pH 7.2에서는 부피에 영향을 서로 주지 않고 각각의 액적에서 결정이 형성되었다.
Lysozyme crystallization was performed by using flow-focusing chip in droplet-based microfluidic system. Water-in-oil droplets were formed in the system and collected on petri-dish and cross type mold. Liquid-liquid reaction of lysozyme and sodium chloride occurred in the droplet and crystals were observed through microscope. Solution pH was varied as 4.8 and 7.2. Crystals of polyhedron and plate-like shape were obtained at pH 4.8, while needle structure crystals formed at pH 7.2. Lysozyme in single droplet for two pHs were crystallized with constant or decreased droplet size. However, crystals at pH 4.8 were only obtained in the droplet of which size was increased by the interaction between droplets. Droplet volume did not change at pH 7.2 and crystals formed in both droplets.
[References]
  1. Alderton G, Fevold HL, Bio.Chem., 164, 1, 1946
  2. “The study on structural proteomics and practical use technique of new medicine development,” Biotech Policy Research Center, 2010
  3. Atencia J, Beebe DJ, Nature., 437(7059), 648, 2005
  4. Seo SW, Ko KY, Lee CS, Kim IH, Korean Chem. Eng. Res., 51(1), 151, 2013
  5. Auroux PA, Iossifidis D, Reyes DR, Manz A, Anal. Chem., 74, 2637, 2002
  6. Li L, Ismagilov RF, Annu.Rev. Biophys., 39, 139, 2010
  7. Du W, Li L, Nichols KP, Ismagilov RF, Lab chip., 9(16), 2286, 2009
  8. Jung JH, Lee CS, Korean Chem. Eng. Res., 48(5), 545, 2010
  9. Kang SM, Choi CH, Kim J, Lee CS, Clean Technol., 18(4), 331, 2012
  10. Kang SM, Choi CH, Hwang S, Jung JM, Lee CS, Korean Chem. Eng. Res., 50(4), 733, 2012
  11. Thorsen T, Roberts RW, Arnold FH, Quake SR, Phys. Rev. Lett., 86, 4163, 2001
  12. Anna SL, Bontoux N, Stone HA, Appl. Phys.Lett., 82, 364, 2003
  13. Zeng S, Li B, Su X, Qin J, Lin B, Lab Chip., 9, 1340, 2009
  14. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA, Science., 308, 537, 2005
  15. Fair RB, Microfluidics and Nanofluidics., 3, 245, 2007
  16. Huh YS, Kim HW, Kim IH, Korean Journal of Biotechnology and bioengineering., 18(2), 122, 2003
  17. Carvajal C, Mcdonald K, Young Scholars Program., 2010
  18. Baret JC, Lab Chip., 12, 422, 2011