Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.6, 739-744, 2013
낙엽송(Larix kaempferi) 고밀도 에너지화를 위한 반탄화 최적조건 탐색
Optimal Condition of Torrefaction for the High-density Solid Fuel of Larch (Larix kaempferi)
본 연구에서는 낙엽송의 연료특성 향상을 위해 반탄화를 수행하였으며 반응표면분석에 의해 반탄화 최적조건을 탐색하였다. 반탄화는 반응온도(220~280 ℃)와 반응시간(20~80분)에 따라 수행하였다. 반탄화 온도가 증가할수록 처리된바이오매스의 탄소함량은 49.36%에서 56.65%로 증가한 반면, 수소와 산소의 함량은 각각 5.56%에서 5.48%, 37.62%에서 31.67%로 감소하였다. 반탄화 처리 후 바이오매스의 중량감소율 및 발열량은 반탄화 정도(SF)에 따라 증가하였다. 가장 높은 반탄화 정도(SF 7)에서 26.58%의 중량감소율을 나타났으며, 발열량은 22.30 MJ/kg으로 처리 전 바이오매스와 비교하여 20.41% 증가하였다. 에너지수율은 반탄화 정도(SF)가 높아질수록 감소하는 경향을 나타냈으며, 높은 발열량 증가와 낮은 중량감소율에서 가장 높은 에너지수율을 나타냈다(SF 5.72).
In this study, torrefaction was performed to improve fuel properties of Larch. The optimal condition for torrefaction was investigated by response surface methodology. The torrefaction temperature and time ranged 220~280 ℃ and 20~80 min, respectively. As the torrefaction temperature and time increased, the carbon content of torrefied biomass increased from 49.36 to 56.65%, while its hydrogen and oxygen contents decreased from 5.56 to 5.48% and from 37.62 to 31.67%, respectively. The weight loss and calorific value increased with SF, while energy yield decreased. At the severe torrefaction condition (SF 7), the weight loss and calorific value were 26.58% and 22.30 MJ/kg, respectively. The energy contained in torrefied biomass increased to 20.41%, when compared with the untreated biomass. As the torrefaction severity increased, the energy yield decreased due to the relatively high weight loss of biomass. Therefore, the highest energy yield was obtained at high calorific value and low weight loss of biomass (SF 5.72).
[References]
  1. Hwang BH, Koo JW, Kim YS, Kim YS, Moon SP, Moon CK, Back KH, Ahn WY, Lee BK, Lee JY, Lee HJ, Cho NS, Woody Biomass. Seoul, Sunjin Moonhwasa, 1998
  2. Simes HC, Hassler CC, Bean TH, “Wood Densification," 833, West Virginia University Extension Service, Morgantown, West Virginia, 1988
  3. Chen WH, Kuo PC, Energy, 36(2), 803, 2011
  4. Repellin V, Govin A, Rolland M, Guyonnet R, Biomass Bioenerg., 34(5), 602, 2010
  5. Bourgois J, Bartholin MC, Guyonnet R, Wood Sci.Technol., 23, 303, 1989
  6. Prins MJ, Ptasinski KJ, Janssen FJJG, J. Anal. Appl. Pyrolysis., 77, 28, 2006
  7. Shang L, Ahrenfeldt J, Holm JK, Sanadi AR, Barsberg S, Thomsen T, Biomass Bioenerg., 40, 63, 2012
  8. Lee JW, Kim YH, Lee SM, Lee HW, Korean Chem. Eng. Res., 50(2), 385, 2012
  9. Lloyd TA, Wyman CE, Bioresour. Technol., 96(18), 1967, 2005
  10. Technical Association of the Pulp and Paper Industry. TAPPI test methods, 1992
  11. Korea Forest Service. The quality standard of wood pellet, 2009
  12. Lee JW, Kim YH, Lee SM, Lee HW, Bioresour.Technol., 116, 471, 2012
  13. Felfli FF, Luengo CA, Suarez JA, Beaton PA, Energy Sus. Devel., 9, 19, 2005
  14. Sadaka S, Negi S, Environmental Progress Sustainable Energy., 28, 427, 2009
  15. Bergman PCA, Boersma AR, Zwart RWR, Kiel JHA, “Torrefaction for Biomass co-firing in Existing Coal-fired Power Stations,” ENC-C-05-013 The Netherlands, Energy Research Center of the Netherlands, 2005
  16. Fengel D, Holzforschung., 47, 103, 1993
  17. Stevanic JS, Salmen L, Cellulose., 15, 285, 2008
  18. Pandey KK, J. Appl. Polym. Sci., 71(12), 1969, 1999
  19. Agarwal UP, Ralph SA, Appl. Spectrosc., 51, 1648, 1997
  20. Akerholm M, Salmen L, Holzforschung., 57, 459, 2003
  21. Gierlinger N, Goswami L, Schmidt M, Burgert I, Coutand C, Rogge T, Schwanninger M, Biomacromolecules, 9(8), 2194, 2008
  22. Liu Q, Wang S, Wang K, Luo Z, Cen K, Korean J. Chem. Eng., 26(2), 548, 2009