Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.6, 733-738, 2013
중금속으로 오염된 해양퇴적토의 전기동력학적 정화
Electrokinetic Extraction of Metals from Marine Sediment
퇴적토는 미사 및 점토와 같은 미세토의 함량이 높으며, 유기물질이 많으며, 완충능이 크기 때문에 퇴적토로부터 중금속을 제거하는 것은 매우 어렵다. 본 연구에서는, 중금속으로 오염된 퇴적토에서 중금속을 제거하기 위해 2 V/cm의 일정한 전압경사를 적용한 실험실 규모의 전기동력학적 (EK) 정화공법을 사용하였다. 실험을 위해 적용한 음극 전해질로는 0.1 M의 ethylenediaminetetraacetic acid (EDTA), citric acid (CA), HNO3, HCl, 그리고 수돗물을 사용하였으며, 양극 전해질로는 수돗물을 사용하여 순환시켜 주었다. 음극 전해질로 CA를 사용한 실험군에서 Ni, Cu, Zn, Pb는 각각 초기와 비교하여 92.4, 96.1, 97.1, 88.1%의 중금속 제거효율을 보였다. 높은 전압경사를 적용하게 되면, 음극 전해질내에 citrate 및 EDTA가 퇴적토로 이동이 용이하게 되며, 그로 인해 중금속-킬레이트 화합물을 형성하여 중금속의 추출률을 높일 수 있었다. 이러한 결과를 바탕으로, 높은 전압경사를 적용한 EK 실험에서 음극 전해질로 EDTA 혹은 CA를 사용하면 퇴적토로부터 중금속을 효과적으로 추출할 수 있다고 판단된다.
Sediment contains a high fraction of organic matter, high buffering capacity, and a large portion of fine grained particles such as silt and clay, which are major barriers to remove heavy metals from sediments. In this study, a lab-scale electrokinetic (EK) technique was applied to remove heavy metals effectively from marine sediment at a constant voltage gradient of 2 V/cm. A concentration of 0.1 M of ethylenediaminetetraacetic acid (EDTA), citric acid (CA), HNO3, and HCl were circulated in the cathode, and tap water was circulated in the anode. CA extracted 92.4% of Ni, 96.1% of Cu, 97.1% of Zn, and 88.1% of Pb from marine sediment. A higher voltage gradient enhanced the transport of citrate and EDTA into the sediment and, therefore, increased metal extraction from the marine sediment through a complexation reaction between metals and the chelates. Based on these results, the electrokinetic process using a high voltage gradient with EDTA and CA might be useful to extract heavy metals from marine sediment.
[References]
  1. Kim KJ, Kim DH, Yoo JC, Baek K, Sep. Purif. Technol., 79(2), 164, 2011
  2. Park SY, Park GY, Kim DH, Yang JS, Baek K, Sep. Sci. Technol., 45(12-13), 1982, 2010
  3. Nystrom GM, Ottosen LM, Villumsen A, Eng. Geol., 77, 349, 2005
  4. Meegoda JN, Perera R, J. Hazard. Mater., 85, 89, 2001
  5. Li F, Bade R, Oh S, Shin WS, Korean J. Chem. Eng., 29(10), 1362, 2012
  6. Yoo JC, Lee CD, Yang JS, Baek K, Chem. Eng.J., 228, 688, 2013
  7. Yeung AT, Sep. Purif. Technol., 79(2), 124, 2011
  8. Acar YB, Alshawabkeh AN, Environ. Sci. Technol., 27, 2638, 1993
  9. Jeon CS, Yang JS, Kim KJ, Baek K, Clean-Soil Air Water., 38, 189, 2010
  10. Kim WS, Park GY, Kim DH, Jung HB, Ko SH, Baek K, Electrochim. Acta., 86, 89, 2012
  11. Jo SU, Kim DH, Yang JS, Baek K, Electrochim. Acta., 86, 57, 2012
  12. Kim DH, Jo SU, Choi JH, Yang JS, Baek K, Chem. Eng. J., 198-199, 110, 2012
  13. Yang JW, Lee YJ, Korean Chem. Eng. Res., 45(4), 311, 2007
  14. Ryu BG, Park GY, Yang JW, Baek K, Sep. Purif. Technol., 79(2), 170, 2011
  15. Yang JS, Lee JY, Baek K, Kwon TS, Choi J, J. Hazard. Mater., 171(1-3), 443, 2009
  16. Kim DH, Ryu BG, Park SW, Seo CI, Baek K, J. Hazard. Mater., 165(1-3), 501, 2009
  17. Dermont G, Bergeron M, Mercier G, Richer-Lafleche M, J. Hazard. Mater., 152(1), 1, 2008
  18. Jain CK, Water Res., 38, 569, 2004
  19. Kaya A, Yukselen Y, J. Hazard. Mater., 120(1-3), 119, 2005
  20. Bodog I, Polyak K, Hlavay J, Int. J.Environ. Anal. Chem., 66, 79, 1997
  21. Altaee A, Smith R, Mikhalovsky S, J. Environ. Manage., 88, 1611, 2008
  22. Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R, J. Hazard. Mater., 40, 117, 1995