Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.6, 716-726, 2013
효소를 이용한 아실화 반응의 최근 동향과 전망
Recent Developments and Prospects in the Enzymatic Acylations
가수분해 효소(혹은 아실전이효소)를 이용한 알콜과 아민의 아실반응은 에스터의 가수분해 반응(hydrolysis, deacylation)과 더불어 효소를 이용한 유기합성 반응에서 이미 잘 확립된 기술로서, 산업체에서 제약의 합성이나 고분자의 합성에서 널리 응용되고 있다. 이러한 효소를 이용한 아실화 반응은 주로 열역학적인 제한으로 인해 그동안 대부분이 주로 유기용매에서 이루어지고 있다. 최근 들어서, 수용액에서 아실화반응을 전이효소를 이용하여 효율적으로 할 수 있다는 보고와 함께 그 반응 기제에 대한 연구들이, X-ray 구조와 이러한 반응을 가능하게 하는 효소의 단백질 서열 비교 연구, 그리고 계산 화학에 의한 효소의 설계 연구등을 통해 새롭게 밝혀지고 있다. 본 총설에서는 효소를 이용한 아실화반응을 유기용매와 수용액에서의 수행함에 있어서 장단점을 비교해 보면서, 앞으로의 전망도 함께 제시하고자 한다. 특별히 다양한 천연물들의 구조 변화에 아실화 반응 생체촉매를 사용할 수 있는 가능성에 대해 살펴볼 것이다.
Enzymatic acylations catalyzed by hydrolytic enzymes, along with enzymatic hydrolysis, are established reactions in the synthesis of fine chemicals such as chiral intermediates and polymerizations in the industry. Those reactions have been carried out mostly in organic media due to the thermodynamic limitations. Recently, there have been reports on enzymatic acylations in aqueous media. They have dealt with the elucidation of reaction mechanisms of hydrolases and acyl transferases based on their X-ray structures, homology comparison of the two kinds of enzymes, substrate engineering of acyl donors and computational design of acyl transferases for enzymatic acylations in aqueous media. Enzymatic acylations play an important role in the combinatorial synthesis of natural products such as polyketides and nonribosomal peptides. In this review, the historic developments of enzymatic acylations and industrial examples are described briefly. In addition, recent developments of enzymatic acylations in the modification of natural products and their prospects will be discussed.
[References]
  1. Faber K, “Biotransformations in Organic Chemistry,” Springer, 1997
  2. Roberts SM, J. Chem. Soc., Perkin Trans., 1, 157, 1998
  3. Turner NJ, O'Reilly E, Nature Chem. Biol., 9, 285, 2013
  4. Liese A, Seelback K, Wandrey C, Industrial Biotransformations, Wiley-VCH, Weinheim, 2006
  5. Strohmeier GA, Pichler H, May O, Gruber-Khadjawi M, Chem. Rev., 111(7), 4141, 2011
  6. Schmid A, Dordick JS, Hauer B, Kiener, Wubbolts AM, Witholt B, Nature., 409, 258, 2001
  7. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K, Nature, 485(7397), 185, 2012
  8. Park D, Lee J, Korean J. Chem. Eng., 30(5), 977, 2013
  9. Min EJ, Lee ES, Korean Chem. Eng. Res., 50(2), 257, 2012
  10. McLachlan MJ, Sullivan RP, Zhao H, “Directed Enzyme Evolution and High-Throughput Screening in Directed Enzyme Evolution and High-Throughput Screening,” in Biocatalysis for the Pharmaceutical Industry : Discovery, Development, and Manufacturing, eds. Tao GQ, Lin AL, Ch. 3, 45-64 John Wiley & Sons, 2009
  11. Boersma YL, Droge MJ, Quax WJ, FEBS J., 274, 2181, 2007
  12. Wang M, Si T, Huimin Z, Biores. Technol., 115, 117, 2012
  13. Quin MB, Schmidt-Dannert C, ACS Catal., 11017, 2011
  14. Patel RN, Coord. Chem. Rev., 252, 659, 2008
  15. Zaks A, Klibanov AM, Science., 224, 1249, 1984
  16. Zaks A, Klibanov AM, Proc. Natl. Acad. Sci. USA., 82, 3192, 1985
  17. Riva S, Chopineau J, Kieboom APG, Klibanov AM, J. Am.Chem. Soc., 110, 584, 1988
  18. Kobayashi T, Biotechnol. Lett., 33(10), 1911, 2011
  19. Paravidino M, Hanefeld U, Green Chem., 2651, 2011
  20. Sheldon RA, Green Chem., 9, 1273, 2007
  21. Barbayianni E, Kokotos G, ChemCatChem., 4, 592, 2012
  22. Schoevaart R et al., Spec. Chem. Mag., 27(8), 38, 2007
  23. Miyazawa K, Yoshida N, “Process for Producing Optically Active α-hydroxyesters Using Lipase PS,” UP 5248610 (Chisso, Japan), 1993
  24. Kobayashi S, Encyc. Polym. Sci.Tech., “Enzymatic Polymerization,”, 2011
  25. Kobayashi S, Macromol. Rapid Commun., 30(4-5), 237, 2009
  26. OECD Primer, “The Application of Biotechnology to Industrial Sustainability-a Primer,” Organization for Economic Co-operation and Development (OECD), 2001
  27. Binns F, Taylor A, “Enzymatic Synthesis,”WO 1994012652 (Baxenden Chemicals, UK), 1994
  28. Binns F, Harffey P, Roberts SM, Taylor A, J. Polym. Sci. A: Polym. Chem., 36(12), 2069, 1998
  29. McCabe RW, Taylor A, Green Chem., 6, 151, 2004
  30. Gross RA, Ganesh M, Lu W, Trends Biotechnol., 28, 435, 2010
  31. Park HG, Do JH, Chang HN, Biotech. Bioproc. Eng., 8, 1, 2003
  32. Park OJ, Jeon GJ, Yang JW, Enzyme Microb. Technol., 25(3-5), 455, 1999
  33. Park OJ, Kim DY, Dordick JS, Biotechnol. Bioeng., 70(2), 208, 2000
  34. John G, Zhu G, Li J, Dordick JS, Angew. Chem. Int. Ed., 45, 4772, 2006
  35. Jadhav SR, Vemula PK, Kumar R, Raghavan SR, John G, Angew. Chem. Int. Ed., 49, 7695, 2010
  36. Jiang Y, Morley KL, Schrag JD, Kazlauskas RJ, ChemBioChem., 12, 768, 2011
  37. Brenneis R, Baeck B, Biotechnol. Lett., 34(8), 1459, 2012
  38. Neang PM, Subileau M, Perrier V, Dubreucq E, J. Mol. Cat. B: Enz., 94, 36, 2013
  39. Xie X, Tang Y, Appl. Environ. Microbiol., 73, 2054, 2007
  40. Gao X, Xie X, Pashkov I, Sawaya MR, Laidman J, Zhang W, Cacho R, Yeates TO, Tang Y, Chem. Biol., 16, 1064, 2009
  41. Collier S, “Commercial Biocatalytic Processes to Simvastatin and Other Molecules,” Org. Proc. Res. Dev., Barcelona, Spain, Scientific Update, 2010
  42. Dunn BJ, Khosla C, “Engineering the Acyltransferase Substrate Specificity of Assembly Line Polyketide Synthases,” J. R. Soc. Interface, 29 May 2013: 20130297.
  43. Mortison JD, Sherman DH, J. Org. Chem., 75(21), 7041, 2010
  44. Minowa Y, Araki M, Kanehisa A, J. Mol. Biol., 368, 1500, 2007
  45. Zhou H, Xie X, Tang Y, Curr. Opin.Biotechnol., 19, 590, 2008
  46. Chooi YH, Tang Y, J. Org. Chem., 99339953, 77, 2012
  47. Zabala AO, Cacho RA, Tang Y, J. Ind.Microbiol. Biotechnol., 39, 227, 2012
  48. Truman AW, Dias MVB, Wu S, Blundell TL, Huang F, Spencer JB, Chem. Biol., 16, 676, 2009
  49. Lee SY, Kim HU, Park JH, Park JM, Kim TY, Drug Discov. Today., 14, 78, 2009
  50. Marienhagen J, Bott M, J. Biotechnol., 163, 166, 2013
  51. Pickens LB, Tang Y, Chooi YT, Ann. Rev. Chem. Biomol.Eng., 2, 211, 2011
  52. Michels PC, Khmelnitsky YL, Dordick JS, Clark DS, Trends Biotechnol., 16(5), 210, 1998
  53. Gonzalez-Sabin J, Moran-Ramallal R, Rebolledo F, Chem. Soc. Rev., 40, 5321, 2011
  54. Khmelnitsky YL, Budde C, Arnold JM, Usyatinsky A, Clark DS, Dordick JS, J. Am. Chem. Soc., 119(47), 11554, 1997
  55. Loncaric C, Merriweather E, Walker KD, Chem. Biol., 13, 309, 2006
  56. Longa RM, Lagisetti C, Coates RM, Croteaua RB, Arch. Biochem. Biophys., 477(2), 384, 2008
  57. Nevarez DM, Mengistu YA, Nawarathne IN, Walker KD, J. Am. Chem. Soc., 131(16), 5994, 2009
  58. Adamczyk M, Gebler JC, Mattingly PG, Tetrahedron Lett., 35, 1019, 1994
  59. Storz T, Gu J, Wilk B, Olsen E, Tetrahededron Lett., 51, 5511, 2010
  60. Wang P, Gao X, Chooi YH, Deng Z, Tang Y, Microbiol., 157(8), 2401, 2011
  61. Pickens LB, Kim W, Wang P, Zhou H, Watanabe K, Gomi S, Tang Y, J. Am. Chem. Soc., 131(48), 17677, 2009
  62. Pickens LB, Sawaya MR, Rasool H, Pashkov I, Yeates TO, Tang Y, J. Biol. Chem., 286, 41539, 2011
  63. Wang P, Kim W, Pickens LB, Gao X, Tang Y, Angew. Chem. Int. Ed., 51, 11136, 2012
  64. Robbel L, Marahiel MA, J. Biol. Chem., 285, 27501, 2010
  65. Strieker M, Marahiel MA, ChemBioChem., 10, 607, 2009
  66. Boeck LD, Fukuda DS, Abbott BJ, Debono M, J. Antibiot., 41, 1085, 1988
  67. Debono M, Abbott BJ, Molloy RM et al., J.Antibiot., 41, 1093, 1988
  68. Shao L, Li J, Liu A, Chang Q, Lin H, Chen D, Appl.Environ. Microb., 79(4), 1126, 2012
  69. D’Costa VM, Mukhtar TA, Patel T, Koteva K, Waglechner N, Hughes DW, Wright GD, De Pascale G, Antimicrob. Agents Chemo., 56(2), 757, 2012
  70. Grunewald J, Sieber SA, Mahlert C, Linne U, Marahiel MA, J. Am. Chem. Soc., 126(51), 17025, 2004
  71. Kopp F, Grunewald J, Mahlert C, Marahiel MA, Biochem., 45, 10474, 2006
  72. Miao V, Coeffet-Le Gal MF, Nguyen K, Brian P, Penn J, Whiting A, Steele J, Kau D, Martin S, Ford R, Gibson T, Bouchard M, Wrigley SK, Baltz RH, Chem. Biol., 13(3), 269, 2006
  73. Nguyen KT, Ritz D, Gu JQ, et al., Proc. Natl.Acad. Sci., 103, 17462, 2006
  74. Dubois EA, Cohen AF, Br. J. Clin.Pharmacol., 69, 2, 2010
  75. De Mattos-Shipley K, Hayes P, Collins C, Kilaru S, Hartley A, Foster GD, Bailey AM, “Biobased Antibiotics from Basidios: a Case Study on the Identification and Manipulation of a Gene Cluster Involved in Pleuromutilin Biosynthesis from Clitopilus passeckerianus,” Proc. Of the 7th Int. Conf. Mushroom Biol. Mushroom Prod. (ICMBMP7), 224, 2011
  76. Honda K, Kataoka M, Shimizu S, Appl. Microbiol. Biotechnol., 60(3), 288, 2002
  77. Honda K, Sakamoto K, Kita S, Kataoka M, Shimizu S, Biosci. Biotechnol. Biochem., 67, 192, 2003
  78. Kopp F, Marahiel MA, Nat. Prod.Rep., 24, 735, 2007
  79. Wang M, Zhou H, Wirz M, Tang Y, Boddy CN, Biochem., 48(27), 6288, 2009
  80. Pinto A, Wang M, Horsman M, Boddy CN, Org. Lett., 14(9), 2278, 2012
  81. Walsh CT, ChemBioChem., 3, 125, 2002
  82. Kiss G, Celebi-Olcum N, Moretti R, Baker D, Houk KN, Angew. Chem. Int. Ed., 52, 2, 2013
  83. Otten L, et al., Trends Biotechnol., 28, 46, 2010
  84. Planson AG, Carbonell P, Grigoras I, Faulon JL, Biotechnol. J., 6, 812, 2011
  85. Pirie CM, De Mey M, Prather KLJ, Ajikumar PK, ACS Chem. Biol., 8(4), 662, 2013