Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.6, 692-699, 2013
순환유동층 적용을 위한 국내 폐플라스틱 고형연료의 등온 열분해 분석
Kinetic Analysis of Isothermal Pyrolysis of Korean Refuse Plastic Fuel for Application to Circulating Fluidized Bed Boiler
본 연구에서는 국내 상용 순환유동층 보일러에서 아역청탄과 혼소용 연료로 사용예정인 폐플라스틱 고형연료(RPF)의 열분해 반응특성을 규명하기 위해 열천칭 반응기를 이용하여 등온(350, 375, 400, 425, 450, 500, 850 ℃) 열분해 실험을 수행하였다. 등온 열분해 결과, 반응온도 구간 375~450 ℃에서의 반응모델 변화는 관찰되지 않았으며, 12개 반응모델 중 1차 화학반응(F1)이 가장 적합한 반응모델로 판명되었다. 이때 Arrhenius 식을 사용하여 계산한 활성화에너지는 39.44 kcal/mol이었으며, Iso-conversional 방법을 적용할 경우 활성화에너지 평균값(0.5≤X≤0.9 구간)은 36.96 kcal/mol로 반응모델 결정 여부와 관계없이 유사한 값을 보였다. 한편 순환유동층보일러의 운전온도인 850 ℃에서 RPF 입도(d) 변화에 따른 탈휘발 시간은 tdev=10.38d2.88으로 표현할 수 있었으며, 보일러 내부에서 RPF가 균일하게 연소되기 위해서는 연료 입도와 평균 분산 거리(x)가 x≤1.58d1.44의 상관관계를 만족하여야 함을 확인할 수 있었다.
In this study, isothermal (350, 375, 400, 425, 450, 500, 850 ℃) experiments were carried out using a custom-made thermobalance to analyze the thermal decomposition properties of refuse plastic fuel (RPF), which is to be used as a cofiring fuel with a sub-bituminous coal at commercial circulating fluidized bed (CFB) boiler in Korea. In isothermal pyrolysis results, no change in the reaction model was observed in the temperature range of 375~450 ℃ and it was revealed that the first order chemical reaction (F1) is the most suitable among 12 reaction models. The activation energy shows similar results irrespective of application of reaction model in that the activation energy was 39.44 kcal/mol and 36.96 kcal/mol when using Arrhenius equation and iso-conversional method (0.5≤X≤0.9) respectively. Meanwhile, the devolatilization time (tdev) according to particle size (d) of RPF could be expressed as tdev=10.38d2.88 at 850 ℃, operation temperature of CFB and for even distribution and oxidation of RPF in CFB boiler, we found that the relationship of average dispersion distance (x) and particle size was x≤1.58d1.44.
[References]
  1. https://epsis.kpx.or.kr, in: http://www.kpx.or.kr.
  2. Elsevier., Miller BG, Miller SF, Fluidized-Bed Firing Systems, in: Miller BG, Tillman DA, (Eds.), Combustion Engineering Issues for Solid Fuel Systems,” Elsevier, 275, 2008
  3. Koornneef J, Junginger M, Faaij A, Prog. Energy Combust. Sci., 33, 19, 2007
  4. Wu Z, “Developments in Fluidised Bed Combustion Technology," CCC/110, IEA Clean Coal Centre, London, 2006
  5. Galwey AK, Brown ME, Elsevier., “Kinetic Background to Thermal Analysis and Calorimetry, in: Brown ME (Ed.), Handbook of Thermal Analysis and Calorimetry,” Elsevier, 147, 1998
  6. Kim S, Kavitha D, Yu TU, Jung J, Song J, Lee S, Kong S, J. Anal. Appl.Pyrolysis., 81, 100, 2008
  7. Kim S, Kim Y, J. Anal. Appl. Pyrolysis., 73, 117, 2005
  8. Leckner B, Werther J, Energy Fuels, 14(6), 1286, 2000
  9. Olsson J, Pallares D, Johnsson F, Chem. Eng. Sci., 74, 148, 2012
  10. Leckner B, Szentannai P, Winter F, Fuel, 90(10), 2951, 2011
  11. Gardiner CW, Handbook of stochastic methods, 2nd ed., Springer, Berlin, 1997
  12. Schlichthaerle P, Werther J, Powder Technol., 120(1-2), 21, 2001
  13. Cozzani V, Petarca L, Tognotti L, Fuel., 74(6), 903, 1995
  14. Lee JM, Kim DW, Kim JS, Korean J. Chem. Eng., 26(2), 506, 2009
  15. Pillai KK, J. Inst. Energy., 54, 142, 1981
  16. Ptacek P, Kubatova D, Havlica J, Brandstetr J, Soukal F, Opravil T, Thermochim. Acta, 501(1-2), 24, 2010
  17. Vyazovkin SV, Lesnikovich AI, Thermochim. Acta., 165, 273, 1990