Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.4, 527-530, 2013
유체 계면에서 콜로이드 흡착에 대한 전해질 농도의 영향
The Effect of Electrolyte Concentration for Colloid Adsorption toward a Fluid-Fluid Interface
이 논문은 콜로이드 입자가 기름-물 사이의 계면으로 흡착될 때 필수적으로 존재하는 정전기적 반발력에 대한 실험적, 이론적 연구이다. 광집게(optical laser tweezers)와 피에조(piezo controller)를 사용하여, 개별 입자를 트랩(trap)한 후, 계면으로 강제 전이시킨다. 이때 수용액이 전해질을 포함한 경우에만, 입자가 계면으로 전이되며, 포함하지 않을 경우에는 흡착이 일어나지 않는다. 이러한 현상을 근본적으로 이해하기 위해, 광학 트랩핑 힘(optical trapping force)과 입자와 계면 사이에 존재하는 정전기적 분리압력(electrostatic disjoining pressure)를 정량적으로 계산하였다. 이를 바탕으로, 입자가 계면으로 흡착될 때, 그들 사이에는 필연적으로 문턱 에너지(threshold energy)가 존재함을 밝혀냈다. 콜로이드 입자가 에멀젼(emulsions)이나 거품(foams)등 두 개 이상의 섞이지 않는 유체계면을 안정화 시키는 “콜로이드 계면 활성제(colloid surfactants)” 역할을 한다는 사실을 고려했을 때, 본 연구는 이러한 입자의 흡착 현상을 근본적으로 이해하는데 있어서 중요한 지식을 제공한다.
I present the behavior of colloidal adsorption to an oil-water interface in the presence of electrolyte in an aqueous subphase. The optical laser tweezers and the piezo controller are used to trap an individual polystyrene microsphere in water and forcibly transfer it to the interface in the vertical direction. Addition of an electrolyte (i.e., NaCl) in the aqueous subphase enables the particle to attach to the interface, whereas the particle escapes from the trap without the adsorption in the absence of the electrolyte. Based on the analytical calculations of the optical trapping force and the electrostatic disjoining pressure between the particle and the oil-water interface, it is found that a critical energy barrier between them should exist. This study will provide a fundamental understanding for applications of colloidal particles as solid surfactants that can stabilize the immiscible fluid-fluid interfaces, such as emulsions (i.e., Pickering emulsions) and foams.
[References]
  1. Binks BP, Horozov TS, “Colloidal Particles at Liquid Interfaces,” Cambridge University Press, New York, 2006
  2. Binks BP, Curr. Opin. Colloid Interface Sci., 7, 21, 2002
  3. Pickering SU, J. Chem. Soc. Trans., 91, 2001, 1907
  4. Dinsmore AD, et al., Science., 298, 1006, 2002
  5. Binsk BP, Fletcher PDI, Langmuir, 17(16), 4708, 2001
  6. Park BJ, Lee D, ACS Nano., 6, 782, 2012
  7. Park BJ, Lee D, Soft Matter., 8, 7690, 2012
  8. Brugarolas T, Park BJ, Lee MH, Lee D, Adv. Funct. Mater., 21(20), 3924, 2011
  9. Park BJ, Brugarolas T, Lee D, Soft Matter., 7, 6413, 2011
  10. Park BJ, et al., Soft Matter., 9, 3383, 2013
  11. Park BJ, Choi CH, Kang SM, Tettey KE, Lee CS, Lee D, Langmuir, 29(6), 1841, 2013
  12. Aveyard R, et al., Phys. Rev. Lett., 88, 246102, 2002
  13. Hurd AJ, J. Phys. A: Math. Gen., 45, L1055, 1985
  14. Park BJ, Furst EM, Soft Matter., 7, 7676, 2011
  15. Park BJ, Furst EM, Soft Matter., 7, 7683, 2011
  16. Park BJ, Pantina JP, Furst EM, Oettel M, Reynaert S, Vermant J, Langmuir, 24(5), 1686, 2008
  17. Park BJ, Vermant J, Furst EM, Soft Matter., 6, 5327, 2010
  18. Pieranski P, Phys. Rev. Lett., 45, 569, 1980
  19. Marinova KG, Alargova RG, Denkov ND, Velev OD, Petsev DN, Ivanov IB, Borwankar RP, Langmuir, 12(8), 2045, 1996
  20. Masschaele K, et al., Phys. Rev. Lett., 105, 048303, 2010
  21. Pantina JP, Furst EM, Langmuir, 20(10), 3940, 2004
  22. Lee MH, Furst EM, Phys. Rev. E., 77, 041408, 2008
  23. Schneider CA, Rasband WS, Eliceiri KW, Nat. Meth., 9, 671, 2012
  24. Ashkin A, Biophys. J., 61, 569, 1992
  25. Park BJ, Furst EM, Langmuir, 24(23), 13383, 2008
  26. Paunov VN, Binks BP, Langmuir, 15(6), 2015, 1999