Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.4, 513-517, 2013
Perovskite NbxSrTi1-xO3 광 촉매를 이용한 메탄올/물 분해로부터 수소제조
Hydrogen Production from Splitting of Methanol/Water Solution Using Perovskite Structured NbxSrTi1-xO3 Photocatalyts
본 연구는 광 촉매로써 널리 사용되어 온 perovskite 결정인 SrTiO3 골격에 형광능력이 우수한 Nb을 일부 삽입한 NbxSrTi1-xO3를 합성하였고, Nb와 Ti의 몰 비율에 따른 물 분해로부터 수소제조 성능을 비교하고자 하였다. 제조한 SrTiO3 및 NbxSrTi1-xO3 분말에 대한 물성평가는 X-선 회절분석법(XRD), 에너지 분산형 X-선 분광계(EDS), 자외선/가시선 분광계(UV/Vis-spectrometer)를 통해 분석하였다. 메탄올:물(1:1) 광분해 수소제조 실험 결과, SrTiO3 광 촉매보다 Nb이 0.05 mol% 첨가된 Nb0.05SrTi0.95O3 광 촉매에서 촉매활성이 가장 뛰어났으며, 특히 염기성 용액에서 더 많은 양의 수소가 발생하였으며 8시간 반응 후 수소의 발생 누적 량은 4.9 mL였다.
This study focused on the synthesis of NbxSrTi1-xO3 photocatalysts which partially inserted Nb ions with excellent ability of fluorescence into the perovskite structured SrTiO3 frameworks and their photocatalytic hydrogen productions from methanol/water splitting corresponding to the molar ratios of Ti and Nb. The characteristics of the synthesized SrTiO3 and NbxSrTi1-xO3 powders were analyzed by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDS), and UV-Visible spectrometer. The hydrogen evolution from methanol/water photo-splitting was enhanced over Nb0.05SrTi0.95O3 compared to those over SrTiO3 and another NbxSrTi1-xO3; 4.9 mL of hydrogen gases was collected after 8 h when 0.5g of Nb0.05SrTi0.95O3 catalyst was used in pH 10.
[References]
  1. Winter CJ, Int. J. Hydrog. Energy., 34, S1, 2009
  2. Baykara SZ, Int. J. Hydrog. Energy., 29, 1451, 2004
  3. Damle AS, J. Power Sources, 180(1), 516, 2008
  4. Niu MN, Cheng D, Cao D, Int. J. Hydrog. Energy., 38, 1251, 2013
  5. Seferlis AK, Neophytides SG, Appl. Catal. B: Environ., 132-133, 543, 2013
  6. Jiang L, Wang Q, Li C, Yuan J, Shangguan W, Int. J. Hydrog. Energy., 35, 7043, 2010
  7. Huang Q, Ma W, Yan X, Chen Y, Zhu S, Shen S, J. Mol. Catal. A-Chem., 366, 261, 2013
  8. Puangpetch T, Sommakettarin P, Chavadej S, Sreethawong S, Int. J. Hydrog.Energy., 35, 12428, 2010
  9. Yu H, Yan S, Li Z, Yu T, Zou Z, Int. J. Hydrog. Energy., 37, 12120, 2012
  10. Cui W, Feng L, Xu C, Lu S, Qiu F, Catal. Commun., 5, 533, 2004
  11. Inagaki M, Nakazawa Y, Hirano M, Kobayashi Y, Toyoda M, Int. J. Inorg. Mater., 3, 809, 2001
  12. Dong DB, Li PJ, Li XJ, Zhao Q, Zhang YQ, Jia CY, Li P, J. Hazard. Mater., 174(1-3), 859, 2010
  13. Mizoguchi H, Ueda K, Orita M, Moon SC, Kajihara K, Hirano M, Hosono H, Mater. Res. Bull., 37(15), 2401, 2002
  14. Lee WW, Chung WH, Huang WS, Lin WC, Lin WY, Jiang YR, Chen CC, J. Taiwan. Inst. Chem. E., 2013
  15. Parayil SK, Baltrusaitis J, Wua CM, Koodali RT, Int. J. Hydrog. Energy., 38, 2656, 2013
  16. Stengl V, Bakardjieva S, Murafa N, Houskova V, Lang K, Microporous Mesoporous Mater., 110, 370, 2008
  17. Hao R, Xiao X, Zuo X, Nan J, Zhang W, J. Hazard.Mater., 209-210, 137, 2012
  18. Dong W, Li X, Yu Jie, Guo W, Li B, Tan L, Li C, Mater. Lett., 67, 131, 2012
  19. Yu H, Yan S, Li Z, Yu T, Zou Z, Int. J.Hydrog. Energy., 37, 12120, 2012
  20. Zou JP, Zhang LZ, Luo SL, Leng LH, Luo XB, Zhang MJ, Luo Y, Guo GC, Int. J. Hydrog. Energy., 37, 17068, 2012
  21. Zhang S, Liu J, Han Y, Chen B, Li X, Mat. Sci. Eng B., 110, 11, 2004
  22. Liu Y, Xie L, Li Y, Yang R, Qu JL, Li YQ, Li XG, J. Power Sources, 183(2), 701, 2008
  23. Burton AW, Ong K, Rea T, Chan IY, Microporous Mesoporous Mater., 117, 75, 2009
  24. Wang Q, An N, Bai Y, Hang H, Li J, Lu X, Liu Y, Wang F, Li Z, Lei Z, Int. J. Hydrog. Energy., 1, 2013
  25. Rusdi R, Rahman AA, Mohamed NS, Kamarudin N, Kamarulzaman N, Powder Technol., 210(1), 18, 2011