Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.4, 465-469, 2013
Oil Palm Frond의 반탄화를 통한 연료화 연구
The Fuelization Study on the Oil Palm Frond Through Torrefaction
본 연구는 반탄화된 OPF(oil palm fronds)의 연료로써 이용가능성을 알아보았다. OPF는 200, 250, 300, 350 ℃에서 각각 1시간과 2시간 동안 반탄화를 진행하였다. 반탄화된 OPF는 온도가 높아짐에 따라 그리고 반탄화 시간이 증가됨에 따라 발열량이 증가하였다. 또한, 반탄화 시간보다는 반탄화 온도가 더 중요한 요소였다. 하지만 반탄화 온도가 높아질수록 반탄의 수득률이 감소함으로 적절한 반탄화 온도가 요구되었다. 250 ℃에서의 반탄화로는 헤미셀룰로오스의 분해가 상당히 진행되고 300 ℃에서는 셀룰로오스의 분해까지도 거의 진행됨을 OPF의 열분해 거동으로부터 알 수 있었다. 또한, 반탄화된 OPF는 바이오매스의 grindability를 향상시킴으로 분쇄에 소모되는 에너지를 감소시킴을 예측할 수 있었다.
In this study, we investigated the feasibility of torrefied OPF (oil palm fronds) as the fuel. The torrefaction was performed at 200, 250, 300 and 350 ℃ during 1 and 2 hours, respectively. As raising the torrefaction temperature and increasing the processing time, the GHV (gross heating value) of torrefied OPFs was increased. Moreover, we found that the torrefaction temperature is more important factor than the processing time. However, the proper torrefaction temperature was asked because the higher torrefaction temperature leaded to the lower torrefied OPF yield. TGA (thermo-gravimetric analysis) data released that the torrefaction at 250 ℃ could significantly decompose the hemicellulose and the almost cellulose was decomposed at 300 ℃. In addition, the grindability of biomass was improved after torrefaction, so that it can reduce energy consumption in comminution.
[References]
  1. Prasetyo J, Park EY, Korean J. Chem. Eng., 30(2), 253, 2013
  2. Malilas W, Kang SW, Kim SB, Yoo HY, Chulalaksananukul W, Kim SW, Korean J. Chem. Eng., 30(2), 405, 2013
  3. Buasri A, Ksapabutr B, Panapoy M, Chaiyut N, Korean J. Chem. Eng., 29(12), 1708, 2012
  4. Chaiprasert P, Vitidsant T, Korean J. Chem. Eng., 26(6), 1545, 2009
  5. Miccio F, Svoboda K, Schosger JP, Baxter D, Korean J. Chem. Eng., 25(4), 721, 2008
  6. Sun H, Song BH, Jang YW, Kim SD, Li H, Chang J, Korean J. Chem. Eng., 24(2), 341, 2007
  7. Kim KS, Choi EA, Ryu JS, Lee YP, Park JY, Choi SH, Park SJ, Appl. Chem. Eng., 23(5), 440, 2012
  8. van der Stelt MJC, Gerhauser H, Kiel JHA, Ptasinski KJ, Biomass Bioenerg., 35(9), 3748, 2011
  9. Lee JW, Kim YH, Lee SM, Lee HW, Korean Chem. Eng. Res., 50(2), 385, 2012
  10. Pentananunt R, Rahman ANMM, Bhattacharya SC, Energy., 15, 1175, 1990
  11. Deng J, Wang GJ, Kuang JH, Zhang YL, Luo YH, J. Anal. Appl. Pyrolysis., 86, 331, 2009
  12. Uemura Y, Omar WN, Tsutsui T, Yusup SB, Fuel, 90(8), 2585, 2011
  13. Chang S, Zhao ZL, Zheng AQ, He F, Huang Z, Li HB, Energy Fuels, 26(11), 7009, 2012
  14. Wu KT, Tsai CJ, Chen CS, Chen HW, Appl. Energy., 100, 52, 2012
  15. Strezov V, Popovic E, Filkoski RV, Shah P, Evans T, Energy Fuels, 26(9), 5930, 2012
  16. Wannapeera J, Fungtammasan B, Worasuwannarak N, J. Anal. Appl. Pyrolysis., 92, 99, 2011
  17. Uemura Y, Omar WN, Othman NAB, Yusup SB, Tsutsui T, World Renewable Energy Congress., 2011, 516, 2011
  18. Lim XY, Andresen JM, Fuel Process. Technol., 92(9), 1796, 2011
  19. Mohideen MF, Faiz M, Salleh H, Zakaria H, Raghavan VR, Proceedings of the World Congress on Engineering 2011., 3, 2011
  20. Khor KH, Lim KO, Alimuddin ZAZ, Energy Sources Part A-Recovery Util. Environ. Eff., 32(6), 518, 2010
  21. Strezov V, Patterson M, Zymla V, Fisher K, Evans TJ, Nelson PF, J. Anal. Appl. Pyrolysis., 79, 91, 2007
  22. Cao XY, Pignatello JJ, Li Y, Lattao C, Chappell MA, Chen N, Miller LF, Mao JD, Energy Fuels, 26(9), 5983, 2012
  23. Aziz MA, Sabil KM, Uemura Y, Ismail L, J. Applied Sci., 1, 2012
  24. Tapasvi D, Khalil R, Skreiberg O, Tran KQ, Gronli M, Energy Fuels, 26(8), 5232, 2012
  25. Chew JJ, Doshi V, Renew.Sust. Energ. Rev., 15, 4212, 2011