Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.4, 460-464, 2013
Chemical Manganese Dioxide (CMD) 합성에서의 Seed의 열처리 효과 및 그 CMD로부터 제조되는 LiMn2O4의 전지특성
Heat Treatment Effect of Seed on Synthesis of Chemical Manganese Dioxide (CMD) and Electrochemical Properties of LiMn2O4 obtained from the CMD
본 연구에서는 LiMn2O4 제조에서 Mn 원료로 사용되는 CMD를 seed 첨가법을 사용하여 제조하고자 하였으며, Seed의 열처리 온도가 CMD 합성에 미치는 영향을 고찰하고, 그로부터 제조되는 LiMn2O4의 전기화학적 특성을 평가하고자 하였다. 제조한 시료의 물성평가는 X-선 회절 분석법(XRD), 주사전자현미경(SEM)을 통하여 실시하였다. 그 결과, MnCO3를 300 ℃ 이상의 온도에서 열처리하여 seed로 사용할 경우 γ-MnO2 상의 CMD가 얻어졌으며, 그 CMD를 LMO 제조에 사용할 경우 전기화학적 특성이 비교적 우수한 LMO가 얻어졌다.
A series of Mn compound were prepared by seed-assisted method. The seed used in this reaction was manufactured by calcination of MnCO3 at various temperatures and effects of the calcination temperature on seed-assisted reaction were investigated. With increase of the calcination temperature, CMD (γ-MnO2) was recovered after seedassisted reactions. LMO used as cathode active material in the Li-ion batteries were synthesized from Mn source obtained in the seed-assisted reaction and the electrochemical properties (rate capability, cycle life performance and specific capacity) of the LMO were investigated. The LMO synthesized from the CMD which is obtained by the reaction with seed prepared by calcination of MnCO3 more than 350 ℃ shown good electrochemical properties.
[References]
  1. Whittingham MS, Chem. Rev., 104(10), 4271, 2004
  2. Armand M, Tarascon JM, Nature., 451, 652, 2008
  3. Park OK, Cho Y, Lee S, Yoo HC, Song HK, Cho J, Energy Environ. Sci., 4, 1621, 2011
  4. Shim J, Kostecki R, Richardson T, Song X, Striebel KA, J. Power Sources, 112(1), 222, 2002
  5. Jiao F, Shaju KM, Bruce PG, Angew. Chem.-Int. Edit., 44, 6550, 2005
  6. Li XF, Xu YL, J. Solid State Electrochem., 12, 851, 2008
  7. Gnanaraj JS, Pol VG, Gedanken A, Aurbach D, Electrochem. Commun., 5, 940, 2003
  8. Hong YS, Han CH, Kim K, Kwon CW, Campet G, Choy JH, Solid State Ion., 139(1-2), 75, 2001
  9. Komaba S, Oikawa K, Myung ST, Kumagai N, Kamiyama T, Solid State Ion., 149(1-2), 47, 2002
  10. Amine K, Tukamoto H, Yasuda H, Fujita Y, J. Power Sources, 68(2), 604, 1997
  11. He XM, Li JJ, Cai Y, Jiang CY, Wan CR, Mater. Chem. Phys., 95(1), 105, 2006
  12. Lu W, Belharouak I, Park SH, Sun YK, Amine K, Electrochim. Acta, 52(19), 5837, 2007
  13. Eftekhari A, Solid State Ion., 167(3-4), 237, 2004
  14. Ferracin LC, Amaral FA, Bocchi N, Solid State Ion., 130(3-4), 215, 2000
  15. Chou SL, Cheng FY, Chen J, J. Power Sources, 162(1), 727, 2006
  16. Hill LI, Verbaere A, Guyomard D, J. Power Sources, 119, 226, 2003
  17. Lee JW, Kim JI, Roh KC, Park SM, Kim K, Solid State Sciences., 12, 1687, 2003
  18. Zhang SS, Jow TR, J. Power Sources, 109(1), 172, 2002
  19. Yang LX, Zhu YJ, Tong H, Wang WW, Ultrason. Sonochem., 14, 259, 2007
  20. Zhao JZ, Tao ZL, Liang J, Chen J, Cryst. Growth. Des., 8, 2799, 2008
  21. Yang ZH, Zhang WX, Wang Q, Song XM, Qian YT, Chem. Phys. Lett., 418(1-3), 46, 2006
  22. Pistoia G, Antonini A, Zane D, Pasquali M, J. Power Sources., 56, 37, 1995