Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.2, 272-278, 2013
암모니아 함유 악취폐가스의 광촉매반응공정과 바이오필터로 구성된 하이브리드시스템 처리
Treatment of Malodorous Waste Air Containing Ammonia Using Hybrid System Composed of Photocatalytic Reactor and Biofilter
퇴비공장 또는 공공시설에서 발생되는 악취폐가스의 대표적인 제거대상 오염원인 암모니아를 포함한 악취폐가스를 처리하기 위하여 여러 운전 조건 하에서의 광촉매반응기와 바이오필터로 구성된 하이브리드시스템을 운전하였다. 암모니아 총 제거효율은 하이브리드시스템의 운전부하가 운전 단계별로 커졌음에도 불구하고 약 80%로 유지되었다. 광촉매반응기에서의 암모니아 제거효율은 광촉매반응기로의 암모니아 유입부하량이 증가함에 따라서 광촉매반응기의 암모니아 제거효율은 65%에서 약 22%로 감소하였다. 같은 암모니아 유입부하량일지라도 암모니아농도가 클 때보다 적은 경우에 광촉매반응기의 암모니아 제거효율이 상대적으로 높았다. 반면에 바이오필터의 경우는 운전 전반부에는 암모니아 처리효율이 현저하게 억제되었으나 광촉매반응기의 경우와 반대로 시간이 경과하면서 암모니아 유입부하량이 증가함에도 불구하고 바이오필터의 암모니아 제거효율은 지속적으로 약 78%까지 증가하여서 Lee 등의 연구결과에서의 암모니아 제거효율과 비슷하게 도달하였다. 광촉매반응기에 의한 최대 암모니아 제거용량(ECPR)은 약 16 g-N/m3/h이었고, 바이오필터에 의한 암모니아 제거용량(ECBF)은 운전 초기에 암모니아 총 부하가 작은 경우에는 암모니아 총부하증가에 따른 ECBF의 증가추세가 미약하였으나 운전 후반부에 암모니아 총 부하가 큰 경우에는 암모니아 총 부하증가에 따른 ECBF의 증가추세가 급격하게 커졌다. 하이브리드시스템 운전 6단계에서 암모니아 총 부하가 약 80 g-N/m3/h일 때에 광촉매반응기에서의 ECPR은 약 16 g-N/m3/h이었고, 2차 공정이고 주공정인 바이오필터에 걸리는 암모니아 부하는 나머지인 약 64 g-N/m3/h이고 주공정인 바이오필터의 ECBF은 약 48 g-N/m3/h로 산출되었다. 이러한 바이오필터의 암모니아 제거용량은 Kim 등의 연구결과로서 최대 암모니아 제거용량인 1,200 g-N/m3/day와 거의 비슷하였다.
The hybrid system composed of a photocatalytic reactor and a biofilter was operated under various operating conditions in order to treat malodorous waste air containing ammonia which is a major air pollutant emitted from composting factories and many publicly owned treatment works. Total ammonia removal efficiency of the hybrid system was maintained to be ca. 80% even though its inlet loads were increased at a higher operating stage according to an operating schedule of the hybrid system. The ammonia removal efficiency of photocatalytic reactor was decreased from 65% to 22% as ammonia inlet loads to photocatalytic reactor were increased. In spite of same inlet loads of ammonia to the photocatalytic reactor, the ammonia removal efficiency of photocatalytic reactor with lower ammonia concentration of fed-waste air was higher than that with higher ammonia concentration of fed-waste air. To the contrary, during the first half of the hybrid system operation the ammonia removal efficiency of a biofilter was quite suppressed while, despite of increased ammonia inlet loads, the ammonia removal efficiency of the biofilter was continuously increased to 78% and reached the ammonia removal efficiency similar to what Lee et al. attained. The maximum ammonia elimination capacity of the photocatalytic reactor was observed to be ca. 16 g-N/m3/h. In an incipient stage of hybrid system run, the ammonia elimination capacity of the biofilter showed little sensitivity against ammonia inlet loads to the hybrid system. However, in the 2nd half of its run, the ammonia elimination capacity of the biofilter was increased abruptly in case of high ammonia inlet loads to the hybrid system. In 6th stage of hybrid system run, total ammonia inlet load attained at ca. 80 g-N/m3/h corresponding to 16 g-N/m3/h of ammonia elimination capacity of the photocatalytic reactor. Then, the remaining ammonia inlet load to the 2nd and main process of the biofilter and its elimination capacity was expected and shown to be ca 64 g-N/m3/h and ca 48 g-N/m3/h, respectively. The ammonia elimination capacity of the biofilter was close to 1,200 g-N/m3/day of the maximum elimination capacity of the investigation performed by Kim et al.
[References]
  1. Kaneko M, Gokan G, Katakura N, Takei Y, Hoshino M, Chem. Commun., 1625, 2005
  2. Jester RC, P.E., Malone GW, “Respiratory Health on the Poultry Farm, National Ag Safety Database (NASD), http://www.cdc.gov/nasd/docs/d000101-d000200/d000146/d000146.html.
  3. Mozzanega H, Herrmann JM, Pichat P, J. Phys. Chem., 83(17), 2251, 1979
  4. Chang JG, Ju SP, Chang CS, Chen HT, J. Phys. Chem.C., 113(16), 6663, 2009
  5. Kolinko PA, Kozlov DV, Appl. Catal. B: Environ., 90(1-2), 126, 2009
  6. Geng QJ, Guo QJ, Cao CQ, Zhang YC, Wang LT, Ind. Eng. Chem. Res., 47(13), 4363, 2008
  7. Yamazoe S, Okumura T, Tanaka T, Catal. Today, 120(2), 220, 2007
  8. Zendehzaban M, Sharifnia S, Hosseini SN, Korean J. Chem. Eng., 30(3), 574, 2013
  9. Yamazoe S, Okumura T, Hitomi H, Shishido T, Tanaka T, J. Phys.Chem. C., 111(29), 11077, 2007
  10. Teramura K, Tanaka T, Yamazoe S, Arakaki K, Funabiki T, Appl. Catal. B: Environ., 53(1), 29, 2004
  11. Altomare M, Chiarello GL, Costa A, Guarino M, Selli E, Chem. Eng. J., 191, 394, 2012
  12. Guarino M, Costa A, Porro M, Bioresour. Technol., 99(7), 2650, 2008
  13. Dong YC, Bai ZP, Liu RH, Zhu T, Catal. Today, 126(3-4), 320, 2007
  14. Hirai M, Ohtake M, Shoda M, J. Ferment. Bioeng., 70, 334, 1990
  15. Easter C, Quigley C, Burrowes P, Witherspoon J, Apgar D, Chem. Eng. J., 113(2-3), 93, 2005
  16. Islander RI, Devinny JS, Mansfield F, Postyn A, Shin H, J. Environ.Eng., 117, 751, 1990
  17. Oyarzun, P, Arancibia F, Canales C, Aroca GE, Process Biochem., 39(2), 165, 2003
  18. Cho KS, Ryu HW, Lee NY, J. Biosci. Bioeng., 90(1), 25, 2000
  19. Wani AH, Branion MR, Lau AK, J. Hazard. Mater., 60, 287, 1998
  20. Chung YC, Huang CP, Tseng CP, Biotechnol. Prog., 12(6), 773, 1996
  21. Chung YC, Huang C, Tseng CP, J. Biotechnol., 52, 31, 1996
  22. Chung YC, Huang C, Tseng CP, Chemosphere., 43, 1043, 2001
  23. Cox HHJ, Deshusses MA, Chem. Eng. J., 87(1), 101, 2002
  24. Shareefdeen Z, Herner B, Webb D, Verhaeghe L, Wilson S, Chem. Eng. J., 113(2-3), 215, 2005
  25. Lee EJ, Park SW, Nam DV, Chung CH, Lim KH, Korean Chem. Eng. Res., 48(3), 391, 2010
  26. Kim NJ, Hirai M, Shoda M, J. Hazard. Mater., B72, 77, 2000
  27. Chen YX, Yin J, Wang KX, Chemosphere., 58, 1023, 2005
  28. Lee EJ, Lim KH, Korean Chem. Eng. Res., 48(3), 382, 2010
  29. Lim KH, Jung YJ, Park LS, Min KS, HWAHAK KONGHAK, 39(5), 600, 2001