Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.2, 250-256, 2013
자동차용휘발유의 산화열화특성 규명 연구
Study on the Characterization of Oxidative Degradation of Automotive Gasoline
휘발유는 온도 및 햇빛 노출 등의 저장환경에 따라 산화에 의해 유기산 및 중축합 고분자 물질(검질)이 생성되어 금속재료의 부식과 고무수지 등의 열화 및 연료공급 시스템의 축적물로 남아 차량 문제를 유발시킬 수 있다. 최근에 LPG와 휘발유 겸용 차량에서 장기간 사용하지 않은 휘발유가 차량문제를 유발하거나, 옥탄가가 비이상적으로 낮은 연료들이 출현하고 있지만 명확한 원인규명이 되지 않은 상황이다. 이에, 휘발유의 산화에 대한 명확한 규명을 통해 저장환경, 품질변화 추정 등 관리방안을 제시하고자 하였다. 휘발유의 산화특성 규명을 위해 현재 유통되고 있는 자동차용 휘발유와 향후 보급가능 바이오에탄올 혼합연료(바이오에탄올 10%)에 대해 저장용기(차량 연료탱크, 폴리에틸렌(PE) 재질 및 철재 용기) 별, 저장환경(햇빛 노출(옥상), 햇빛 비노출(창고)), 대기 중 공기노출 등에 대한 산화열화 영향을 산화가 일어나기 쉬운 여름철(6월~10월)에 18주간 저장평가하여 실제 품질기준 항목에 미치는 영향을 분석하였다. 폴리에틸렌(PE) 재질 용기의 경우 마개 틈 또는 표면으로의 고옥탄가 저비점 성분의 증발로 옥탄가의 품질기준이 벗어나는 경우가 있었다. 특히 햇빛 노출의 상태에서는 휘발유 산화와 저비점 성분의 증발로 옥탄가 및 증기압이 급격히 감소하였고, 검(gum)질도 과량 생성되었다. 바이오에탄올 혼합연료도 유사한 결과를 나타내었다.
Gasoline generates organic acid and polymer (gum) by hydrocarbon oxidation depending on the storage environment such as temperature and exposure to sunlight, which can cause metal corrosion, rubber and resin degradation and vehicle malfunction caused by accumulation in fuel supply system. The gasoline which has not been used for a long time in bi-fuel (LPG-Gasoline) vehicle causes problems, and low octane number gasoline have evaporated into the field, but the exact cause has not been studied yet. In this study, we suggest a plan of quality management by investigating the gasoline oxidation behavior. In order to investigate the oxidation behavior of gasoline, changes of gasoline properties were analyzed at various storage conditions such as storage time, storage vessel type (vehicle fuel tank, PE vessel and Fe vessel) and storage circumstances (sunlight exposure and open system, etc.). Currently distributing gasoline and bioethanol blended fuel (blended 10%) were stored for 18 weeks in summer season. The sample stored in PE vessel was out of quality standard (octane number, vapor pressure, etc.) due to the evaporation of the high octane number and low boiling point components through the vessel cap and surface. Especially, the sunlight exposure sample stored in PE vessel showed rapid decrease of vapor pressure and increase of gum. Bioethanol blended fuel showed similar results as gasoline.
[References]
  1. Ministry of Knowledge and Economy report, “Statistics of Energy Industry in Korea,”, 2012
  2. Jeong KT, “Lubricant and Lubrication Control,” Korea Testing Certification report, 1991
  3. Waynick JA, “Characterization of Biodiesel Oxidation and Oxidation Products,” NREL Publishers, CRC Project No. AVFL- 2b, 2005
  4. Kivevele TT, Mbarawa MM, Bereczky A, Zoldy M, Energy Fuels, 25(11), 5416, 2011
  5. Conceicao MM, Fernandes VJ, Araujo AS, Farias MF, Santos IMG, Souza AG, Energy Fuels, 21(3), 1522, 2007
  6. Abe Y, Toba M, Mochizuki T, Yoshimura Y, J. Jpn. Petrol. Inst., 52(6), 307, 2009
  7. Jung CS, Lee YJ, Dong JI, New & Renewable Energy., 3(2), 17, 2007
  8. Walters EL, Yabroff DL, Minor HB, Ind. Eng. Chem. Res., 40(3), 423, 1948
  9. Walters EL, Minor HB, Yabroff DL, Ind. Eng. Chem. Res., 41(8), 1723, 1948
  10. Pereira RCC, Pasa VMD, Fuel, 85(12-13), 1860, 2006
  11. Yim ES, Kim JG, “A Study on Gasoline Properties According to the Storage Vessel,” K-PETRO Publishers, 2008
  12. Jeong JS, Jang BU, Kim YR, Chung BW, Choi GW, Korean J. Chem. Eng., 26(5), 1308, 2009
  13. Lee MD, Lee IC, Chun HD, HWAHAK KONGHAK, 20(5), 401, 1982
  14. Yeh JT, Jou WS, Su YS, J. Appl. Polym. Sci., 74(9), 2158, 1999
  15. Yeh JT, Huang SS, Yao WH, Macromol. Mater. Eng., 287, 532, 2002
  16. Jain S, Sharma MP, Energ. Fuel., 25, 1276, 2001
  17. Santos NA, Damasceno SS, de Araujo PHM, Marques VC, Rosenhaim R, Fernandes VJ, Queiroz N, Santos IMG, Maia AS, Souza AG, Energy Fuels, 25(9), 4190, 2011
  18. Pereira RCC, Pasa VMD, Energy Fuels, 19(2), 426, 2005
  19. Yim ES, Min KI, “Actual Assessment to Introduce Bio-Ethanol Blended Fuel,” MKE Publishers, 2008