Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.2, 181-188, 2013
UZM-9 제올라이트에서 메탄올의 올레핀으로 전환반응: 전이금속 이온 교환이 촉매의 활성저하에 미치는 영향
Methanol-to-Olefin Conversion over UZM-9 Zeolite: Effect of Transition Metal Ion Exchange on its Deactivation
구리, 코발트, 니켈, 철의 전이금속 이온을 교환한 LTA 골격구조의 UZM-9 제올라이트에서 메탄올이 저급올레핀으로 전환(Methanol-to-Olefin: MTO)되는 반응을 조사하여 전이금속 이온 교환이 촉매의 활성저하에 미치는 영향을 고찰하였다. 전이금속 이온 교환에 따른 UZM-9의 결정구조, 결정 모양, 세공구조, 산성도 변화는 크지 않았다. UZM-9은 둥지 입구가 작아 MTO 반응에서 저급올레핀에 대한 선택도가 높지만, 둥지가 커서 활성중간체인 헥사메틸벤젠 등 폴리메틸벤젠이 쉽게 고리화축합되어 다고리 방향족화합물이 많이 생성되므로 활성저하가 빠르다. 그러나 구리와 코발트이온을 교환하면 MTO 반응에서 UZM-9의 활성저하가 느려졌다. MTO 반응 중 생성되는 폴리메틸벤젠 양이온 라디칼과 전이금속 이온의 상호작용으로 활성중간체가 안정화되어 활성저하가 느려졌다.
The effect of transition metal ion exchange into UZM-9 zeolite with LTA framework on its deactivation in methanol-to-olefin (MTO) conversion was discussed. The ion exchange of copper, cobalt, nickel, and iron did not induce any notable change in the crystallinity, crystal morphology, and acidity of UZM-9. The small cage entrance of UZM-9 caused the high selectivity to lower olefins in the MTO conversion, while its large cages allowed the rapid further cyclecondensation of active intermediates, polymethylbenzenes including hexamethylbenzene, resulting in a rapid deactivation. The UZM-9 containing copper and cobalt ions showed considerably slow deactivations. The interaction between transition metal ions and polymethylbenzene cation radicals, the active intermediates, generated in the MTO conversion stabilized the radicals and slowed down the deactivation of UZM-9.
[References]
  1. Stocker M, Micropor. Mesopor. Mater., 29, 3, 1999
  2. Keil FJ, Micropor. Mesopor. Mater., 29, 49, 1999
  3. Sanfilippo D, Miracca I, Catal. Today, 111(1-2), 133, 2006
  4. Mier D, Aguayo AT, Gayubo AG, Olazar M, Bilbao J, Chem. Eng. J., 160(2), 760, 2010
  5. Chen JQ, Bozzano A, Glover B, Fuglerud T, Kvisle S, Catal. Today, 106(1-4), 103, 2005
  6. Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TVW, Joensen F, Bordiga S, Lillerud KP, Angew. Chem. Int. Ed., 51, 5810, 2012
  7. Jacobs PA, Martens JA, Pure Appl. Chem., 58, 1329, 1986
  8. Wilson S, Barger P, Micropor. Mesopor. Mater., 29, 117, 1999
  9. Chen D, Moljord K, Fuglerud T, Holmen A, Micropor. Mesopor. Mater., 29, 191, 1999
  10. Song WG, Fu H, Haw JF, J. Phys. Chem. B, 105(51), 12839, 2001
  11. Song WG, Haw JF, Nicholas JB, Heneghan CS, J. Am. Chem. Soc., 122(43), 10726, 2000
  12. Seo G, Min BG, Korean Chem. Eng. Res., 44(4), 329, 2006
  13. Lesthaeghe D, Horre A, Waroquier M, Marin GB, Speybroeck VV, Chem. Eur. J., 15, 10803, 2009
  14. Lee HS, Lee Y, Park SS, Chae HJ, Jeong SY, Lee DH, Korean J. Chem. Eng., 27(4), 1328, 2010
  15. Haw JF, Marcus DM, Top. Catal., 34, 41, 2005
  16. Park JW, Lee JY, Kim KS, Hong SB, Seo G, Appl. Catal. A: Gen., 339(1), 36, 2008
  17. Kang M, Inui T, Catal. Lett., 53(3-4), 171, 1998
  18. Dubois DR, Obrzut DL, Liu J, Thundimadathil J, Adekkanattu PM, Guin JA, Punnoose A, Seehra MS, Fuel Process. Technol., 83(1-3), 203, 2003
  19. Hereijgers BPC, Bleken F, Nilsen MH, Svelle S, Lillerud KP, Bjorgen M, Weckhuysen BM, Olsbye U, J. Catal., 264(1), 77, 2009
  20. Kim SJ, Park JW, Lee KY, Seo G, Song MK, Jeong SY, J.Nanosci. Nanotechnol., 10, 147, 2010
  21. Lewis GJ, Miller MA, Moscoso JG, Wilson BA, Knight LM, Wilson ST, Stud. Surf. Sci. Catal., 154A, 364, 2004
  22. http://www.iza-structure.org/database, Data Base of Zeolite Structure
  23. Carl PJ, Larsen SC, J. Catal., 182(1), 208, 1999
  24. M’Ramadj O, Zhang B, Li D, Wang X, Lu G, J. Natur. Gas Chem., 16, 258, 2007
  25. Fu H, Song WG, Haw JF, Catal. Lett., 76(1-2), 89, 2001
  26. Haw JF, Song W, Marcus DM, Nicholas JB, Acc. Chem.Res., 36, 317, 2003
  27. Arstad B, Kolboe S, J. Am. Chem. Soc., 123(33), 8137, 2001
  28. Sassi A, Wildman MA, Ahn HJ, Prasad P, Nicholas JB, Haw JF, J. Phys. Chem. B, 106(9), 2294, 2002
  29. Olsbye U, Bjorgen M, Svelle S, Lillerud KP, Kolboe S, Catal. Today, 106(1-4), 108, 2005
  30. Kim SJ, Jang HG, Lee JK, Min HK, Hong SB, Seo G, Chem. Commun., 47, 9498, 2011