Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.1, 151-156, 2013
미세유체 결정화기를 이용한 탄산칼슘 Biomineralization
CaCO3 Biomineralization in Microfluidic Crystallizer
Polydimethylsiloxane (PDMS) 기반의 미세유체 시스템을 이용해 탄산칼슘의 결정화 실험을 수행하였다. 탄산칼슘의 결정화를 위한 다양한 반응방법 중 액체-액체 반응을 위해 염화칼슘 수용액과 탄산나트륨 수용액을 사용하였고 아스파르트산을 첨가하여 탄산칼슘 결정 중 베터라이트와 칼사이트의 생성에 어떤 차이를 보이는지 조사하였다. 그리고 탄산칼슘의 결정화 진행상황에서 결정핵 생성에 유리한 염화칼슘과 탄산나트륨의 비율을 조사하였다. 이를 위해 크리스 마스트리 모양의 미세유체 반응기를 사용하여 채널 내부에 염화칼슘과 탄산나트륨의 농도구배를 형성하도록 하였다. 미세유체 결정화기 내부를 광학현미경으로 촬영한 결과, 탄산나트륨과 염화칼슘의 농도비가 2:1일 때 결정핵이 생성됨을 확인하였고 핵 생성 이후의 결정 성장 과정을 촬영하여 결정형태의 변화를 관찰하였다. 아스파르트산의 첨가 시에 결정핵 생성과 성장을 저해하며 전체 결정형태 중 베터라이트의 비율이 높아짐을 보였다.
Crystallization of CaCO3 is practiced on a polymethylsiloxane (PDMS) - based microfluidic system. Liquid-liquid reaction was investigated by mixing calcium chloride (CaCl2) and sodium carbonate (Na2CO3) solution to crystallize CaCO3. Aspartic acid (Asp) was added to investigate the morphology change such as vaterite and calcite. Suitable ratio of Na2CO3 and CaCl2 was searched for initial seed formation. Christmas tree model was used as microfluidic device to form concentration gradient of Na2CO3 and CaCl2. After observing microfluidic channel by using optical microscope, we found that seeds of CaCO3 were formed under the condition that the ratio of Na2CO3 and CaCl2 was 2:1. Morphology of crystals were also observed as CaCO3 crystals grow. When Asp was added, vaterite crystal was more frequently found in two morphologies (vaterite and calcite) and seed formation and crystal growth were inhibited.
[References]
  1. Lyu SG, Sur GS, Kang SH, HWAHAK KONGHAK, 35(2), 186, 1997
  2. Park JW, Kim JS, Ahn JW, Han C, J. Korean Ind. Eng. Chem., 17(1), 67, 2006
  3. Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 289(1), 269, 2006
  4. Carmona JG, Morales JG, Clemente RR, J. Colloid Interface Sci., 261(2), 434, 2003
  5. Han HK, Kim BM, Kim JA, Korean Chem. Eng. Res., 46(6), 1052, 2008
  6. Altay E, Shahwan T, Tanoglu M, Powder Technol., 178(3), 194, 2007
  7. Hou WT, Feng QL, J. Cryst. Growth, 282(1-2), 214, 2005
  8. Manoli F, Kanakis J, Malkaj P, Dalas E, J. Cryst. Growth, 236(1-3), 363, 2002
  9. Lyu SG, Park NK, Sur GS, Lee TJ, J. Korean Ind. Eng. Chem., 12(2), 174, 2001
  10. Song SM, Kim IH, Korean J. Chem. Eng., 28(8), 1749, 2011
  11. Jung WM, Kang SH, Kim WS, Choi CK, Chem. Eng. Sci., 55(4), 733, 2000
  12. Song SM, Seong BI, Koo JH, Kim IH, Korean Chem. Eng. Res., 49(1), 109, 2011
  13. Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 47(2), 213, 2009
  14. Hwang DJ, Cho KH, Choi MK, Yu YH, Lee SK, Ahn JW, Lim GI, Han C, Lee JD, Korean J. Chem. Eng., 28(9), 1927, 2011
  15. Naka K. (ed), “Biomineralization I,” Springer, New York, 2007
  16. Addadi L, Weiner S, Proc. Natl. Acad. Sci. USA., 82, 4110, 1985
  17. Kim JH, Kim JM, Kim WS, Kim IH, Korean Chem. Eng. Res., 46(6), 1107, 2008
  18. Yin H, Ji B, Dobson PS, Mosbahi K, Glidle A, Gadegaard N, Freer A, Cooper JM, Cusack M, Anal. Chem., 81(1), 473, 2009
  19. Jung JH, Lee CS, Korean Chem. Eng. Res., 48(5), 545, 2010
  20. Revzin A, Tompkins RG, Toner M, Langmuir, 19(23), 9855, 2003
  21. Xia Y, Whitesides GM, Angew. Chem.Int. Ed., 37, 550, 1998
  22. Jo BH, Van Lerberghe LM, Motsegood KM, Beebe DJ, J. Microelectromech. Syst., 9(1), 76, 2000
  23. Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM, Anal. Chem., 73(6), 1240, 2001
  24. Desiraju GR, Vittal JJ, Ramanan A, “Crystal Engineering," World Scientific, 2011