Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.1, 116-120, 2013
TiO2 광촉매를 이용한 CO제거 공정특성
Characteristics of CO Removal Process Using TiO2 Photocatalyst
관상의 광촉매 반응기에서 Pt가 담지된 TiO2 광촉매를 사용한 CO 전환 반응에 의해 CO를 제거하는 광촉매 공정에 대해 고찰하였다. TiO2 촉매에 Pt를 담지하는 방법, CO를 포함한 기체흐름속도, 기체흐름에 포함된 CO의 농도 그리고 기체의 수분함량이 CO를 CO2로 전환하는 반응의 전환율에 미치는 영향을 검토하였다. Pt/TiO2 광촉매가 관의 내부에 코팅된 관상광촉매 반응기에서 진행된 실험결과 기체의 흐름속도 범위가 0.01~0.25 m/s, CO의 농도가 20~100 ppm 그리고 기체의 상대습도가 20~40%의 범위에서 CO는 UV의 조사 조건에서 거의 100% 정도 제거될 수 있었다. 기체흐름에 포함된 CO의 전환율은 기체의 흐름속도가 증가할수록 그리고 포함된 CO의 농도가 증가할수록 점점 감소하였다. 기체 흐름에 포함된 수분은 OH 라디칼을 형성함으로써 CO의 제거를 촉진할 수 있었다.
Characteristics of photocatalytic CO removal process conducting CO conversion by using Pt loaded TiO2 photocatalyst were investigated in a photocatalytic tubular reactor. Effects of Pt loading method onto TiO2, linear velocity of gas stream containing CO gas, CO concentration and moisture content in the gas stream on the conversion of CO to CO2 were examined. It was found that the CO gas could be removed almost 100% by using photocatalytic tubular reactor internally coated with Pt/TiO2 photocatalyst under UV irradiation, when the linear velocity of gas stream was in the range of 0.01~0.25 m/s and CO concentration in the gas stream was ranged from 20 to 100 ppm and the relative humidity of the gas stream was in the range of 20~40%. The conversion of CO gas decreased gradually with increasing linear velocity of gas stream and CO concentration in the gas stream. The moisture in the gas stream could promote the removal of CO gas by means of the generation of OHradicals.
[References]
  1. Poon CS, Cheung E, Constr. Build. Mater., 21, 1746, 2007
  2. Kwon TR, Roo WH, Lee CW, Lee WM, Korean Chem. Eng. Res., 43(1), 1, 2005
  3. Dibble LA, Raupp GB, Environ, Sci. Tech., 26, 492, 1992
  4. Hoffmann AJ, Carraway ER, Hofmann MR, Environ. Sci. Tech., 28, 776, 1994
  5. Kormann C, Bahnemann DW, Hofman MR, Environ. Sci. Tech., 25, 494, 1991
  6. Chen D, Ray AK, Chem. Eng. Sci., 56(4), 1561, 2001
  7. Arai T, Horiguchi M, Yanagida M, Gunji T, Sugihara H, Sayama K, Chem. Commun., 43, 5565, 2008
  8. Yang CC, Yu YH, van der Linden B, Wu JCS, Mul G, J. Am. Chem. Soc., 132(24), 8398, 2010
  9. Carbajo M, Enciso E, Torralvo MJ, Colloids Surf. A., 293, 72, 2007
  10. Maira AJ, Yeung KL, Lee CY, Yue PL, Chan CK, J. Catal., 192(1), 185, 2000
  11. Ohno T, Sarukawa K, Tokieda K, Matsumura M, J. Catal., 203(1), 82, 2001
  12. Yang J, Zhang J, Zhu LW, Chen SY, Zhang YM, Tang Y, Zhu YL, Li YW, J. Hazard. Mater., 137(2), 952, 2006
  13. Kubo W, Tarsuma T, J. Mater.Chem., 30, 3104, 2005
  14. Yang JH, Han YS, Choy JH, Thin Solid Films, 495(1-2), 266, 2006
  15. Zhan SH, Chen DR, Jiao XL, Tao CH, J. Phys. Chem. B, 110(23), 11199, 2006
  16. Kozlova EA, Lyubina TP, Nasalevich MA, Vorontsov AV, Miller AV, Kaichev VV, Parmon VN, Catal. Commun., 12, 597, 2011
  17. Obee TN, Brown RT, Environ, Sci. Tech., 29, 1223, 1995
  18. Ramaswamy V, Awati P, Ramaswamy AV, Top. Catal., 38, 251, 2006
  19. Chen Y, Stathatos E, Dionysiou DD, Surf. Coat. Technol., 202, 1944, 2008
  20. Bosc F, Ayral A, Guizard C, J. Membr. Sci., 265(1-2), 13, 2005