Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.1, 111-115, 2013
Horseradish Peroxidase 효소촉매에 의한 난연성 페놀고분자의 합성
Enzymatic Synthesis of Flame Retardant Phenolic Polymers Catalyzed by Horseradish Peroxidase
Horseradish peroxidase 효소촉매를 이용하여 dioxane:수용액(80:20 v/v) 혼합용액에서 poly(p-phenylphenol) 수지를 합성하기 위한 최적 반응조건과 생성된 수지의 열분해 안정성과 가열특성을 thermogravimetric analysis (TGA)와 differential scanning calorimetry (DSC) 방법을 통해서 각각 조사하였다. 효소의 사용량이 0.25 mg/mL로 증가할 때 수지의 합성수율은 급격하게 증가하였으나 효소의 사용량이 0.25 mg/mL 이상으로 증가하더라도 수지의 합성수율은 크게 증가하지 않았다. 또한 sodium acetate (100 mM, pH 4~6)와 sodium phosphate (100 mM, pH 7~9) 완충용액을 수용액으로 사용할 경우 pH가 증가할수록 페놀수지의 합성수율이 증가하였다. 그러나 수용액의 pH가 6과 9일 때, 수지의 합성수율은 사용하는 완충염의 종류에 따라서 크게 좌우되었다. 즉 pH 6에서 sodium acetate 대신 sodium phosphate를 사용하면 합성 수율은 15% 정도 감소하였다. 또한 pH 9에서 sodium phosphate 대신 sodium bicarbonate를 사용할 경우 합성 수율이 약 20% 정도 크게 감소하였다. 수용액의 pH가 4~7 범위에서 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS)를 전자전달체로 사용하면(2 mM) 합성 수율이 약 10% 정도 향상되었다. TGA 실험결과 pH 9인 수용액에서 ABTS가 2 mM이 첨가된 합성수지의 800 ℃에서의 잔류량(char yield)이 47%로 열분해 안정성이 가장 우수하였다. DCS 측정 결과 산성수용액에서 합성된 수지와 중성 및 염기성 수용액에서 합성된 수지의 구조특성은 서로 달랐다. 그러나 모든 합성수지는 열경화성 수지의 특성을 보여주었다.
The optimum synthetic conditions of poly(p-phenylphenol) by horseradish peroxidase in dioxane:water (80:20 v/v) mixtures were studied. The stability against thermal degradation and structural properties of the synthesized phenolic resins were investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. The synthetic yield of poly(p-phenylphenol) increased upon the increase of the amount of enzyme up to 0.25 mg HRP/mL, then leveled off for further increase of the enzyme usage. When sodium acetate (100 mM, pH 4~6) and sodium phosphate (100 mM, pH 7~9) were used as the buffering salts for the aqueous component (20% v/v), the synthetic yield of the resin increased at higher pH of the aqueous buffer. But when the pHs of the aqueous buffer were 6 and 9, the synthetic yield strongly depended on the types of the buffering salts; if sodium phosphate was used instead of sodium acetate at pH 6, the yield decreased by about 15% and if sodium bicarbonate was used instead of sodium phosphate, the yield decreased by almost 20%. When the pH range of the aqueous buffer was from 4 to 7, the addition of a radical mediator, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS), up to 2 mM improved the synthetic yield of the resin by about 10%. TGA experiments revealed that the thermal stability of the resin synthesized in dioxane:water (100 mM sodium phosphate, pH 9) (80:20 v/v) was high having the char yield of 47% upon the heating at 800 ℃. DCS results showed that the structures of the polymers synthesized in acidic aqueous buffers were different from those of the polymers synthesized in the basic aqueous buffers. However, all the synthesized resins were found to have the property of the thermosetting resins.
[References]
  1. Brode GL, “Phenolic Resins,” in Kirk-Othmer Encyclopedia of Chemical Technology, 384-416, John Wiley and Sons, New York, 1982
  2. Levchik S, Piotrowski A, Weil E, Yao Q, Polym. Degrad.Stab., 88(1), 57, 2005
  3. Clary JJ, Gibson JE, Waritz RS, Formaldehyde: Toxicology, Epidemiology, Mechanisms, Dekker, New York, 1983
  4. Niu JL, Burnett J, Environ. Int., 26(7-8), 573, 2001
  5. Hay AS, Blanchard HS, Endres GF, Eustance JW, J. Am. Chem. Soc., 81(23), 6335, 1959
  6. Hay AS, J. Polym. Sci., 58(166), 581, 1962
  7. Hay AS, J. Polym. Sci. A: Polym. Chem., 36(4), 505, 1998
  8. Gross RA, Kumar A, Kalra B, Chem. Rev., 101(7), 2097, 2001
  9. Sarkanen KV, Ludwig CH, “Lignins:Occurrence, Formation, Structure and Reactions,” Wiley, New York, 1971
  10. Dordick JS, Marletta MA, Klibanov AM, Biotechnol. Bioeng., 30(1), 31, 1987
  11. Joo H, Yoo YJ, Dordick JS, Korean J. Chem. Eng., 15(4), 362, 1998
  12. Ryu K, Dordick JS, Biochemistry., 31, 2588, 1992
  13. Serdakowski AL, Munir IZ, Dordick JS, J. Am. Chem. Soc., 128(44), 14272, 2006
  14. Uyama H, Maruichi N, Tonami H, Kobayashi S, Biomacromolecules, 3(1), 187, 2002
  15. Shan J, Cao S, Polym. Adv. Technol., 11(6), 288, 2000
  16. Blinkovsky AM, Dordick JS, J. Polym. Sci. Part A:Polym. Chem., 31(7), 1839, 1993
  17. Akkara JA, Senecal KJ, Kaplan DI, J. Polym. Sci. Part A: Polym. Chem., 29(11), 1561, 1991
  18. Granzow A, Acc. Chem. Res., 11(5), 177, 1978
  19. Song HK, Palmore GTR, J. Phys. Chem. B, 109(41), 19278, 2005