Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.1, 80-86, 2013
광촉매 카트리지를 활용한 악취 및 VOC를 함유한 폐가스의 광촉매처리
Photocatalytic Treatment of Waste Air Containing Malodor and VOC by Photocatalytic Reactor Equipped with the Cartridges Containing the Media Carrying Photocatalyst
본 연구에서는 광촉매담지 실리카담체 카트리지를 장착한 광촉매반응기시스템을 활용하여 악취 가스인 황화수소 및 휘발성유기화합물(VOC)인 에탄올 및 톨루엔이 함유된 폐가스처리를 수행하고, 그 연구결과를 상용 광촉매담지 부직포필터 카트리지를 장착한 광촉매반응기시스템을 활용한 연구결과와 비교 및 평가하였다. 광촉매담지 실리카담체 카트리지를 장착한 광촉매반응기시스템의 경우는 1단계 운전에서 에탄올 및 톨루엔의 제거율은 각각 80% 및 20% 값을 계속 유지하였으나, 에탄올의 제거율은 톨루엔과 다르게 점점 떨어져서 1단계 끝에는 제거율 40% 값을 보였다. 한편 황화수소의 제거율은 100%에서 90%로 감소하였다. 에탄올의 제거율은 2단계 운전에서 10% 값을 보여서 더욱 감소하였으나, 황화수소 및 톨루엔 제거효율은 처리대상 폐가스의 톨루엔 부하가 4배로 급격히 증가하였음에도 불구하고 제거효율이 각각 90% 및 20% 값을 그대로 유지하였다. 3단계 운전은 알루미늄 코팅된 반사막필름을 광촉매반응기에 사용한 결과로서, 에탄올 및 톨루엔의 제거율은 각각 약 5%가 증가한 15% 및 25%의 제거율을 보였다. 한편 광촉매담지 부직포필터 카트리지를 장착한 광촉매반응기시스템의 에탄올, 황화수소 및 톨루엔 제거율은 1단계 운전에서 각각 10%, 97% 및 100% 값을 유지하였다. 그러나 2단계 운전에서 에탄올, 황화수소 및 톨루엔 제거율은 각각 5%, 95% 및 2~3% 미만의 제거율을 보여서 에탄올과 황화수소는 제거율이 약간 저하되었으나 톨루엔의 경우에는 완전 제거에서 급락하였다. 또한 에탄올, 황화수소 및 톨루엔 모든 경우에서 반사막필름의 효과를 전혀 보지 못하였다. 따라서 상용 광촉매담지 부직포필터 카트리지를 장착한 광촉매반응기시스템에서 에탄올, 황화수소 및 톨루엔 제거는 부직포필터의 혐수성 VOC에 대한 흡착능에 주로 기인하였고, 광촉매 활성에 의한 제거는 광촉매담지 실리카담체 카트리지를 장착한 광촉매반응기시스템보다 훨씬 미미하였다.
In this study, the photocatalytic reactor system equipped with photocatalyst-carrying-silica-media cartridges [photocatalytic reactor system (1)] was used to perform the treatment of waste air containing malodor and volatile organic compound (VOC). The result of its performance was evaluated and compared with that of the photocatalytic reactor system equipped with commercial photocatalyst-carrying-nonwoven filter-media cartridges [photocatalytic reactor system (2)]. In case of photocatalytic reactor system (1), at the 1st stage of run the removal efficiencies of ethanol and toluene continued to be 80% and 20%, respectively. However, unlike toluene, the removal efficiency of ethanol dropped to 40% at the end of the 1st stage of run. The removal efficiency of hydrogen sulfide decreased from 100% to 90%. At the 2nd stage of its run the removal efficiency of ethanol decreased to 10% while the removal efficiencies of hydrogen sulfide and toluene remained as same as 90% and 20%, respectively, even though the inlet load of toluene increased by factor of four. In the 3rd stage of its run, as the result of application of aluminium-coated reflector film to the inner wall of photocatalytic reactor system, the removal efficiencies of ethanol and toluene increased by 5% to be 15% and 25%, respectively. In case of photocatalytic reactor system (2), at the 1st stage of its run, the removal efficiencies of ethanol, hydrogen sulfide and toluene continued to be 10%, 97% and 100%, respectively. However, at 2nd stage of its run their removal efficiencies became 5%, 95% and 2~3%, respectively, which showed that the removal efficiencies of ethanol and hydrogen sulfide decreased insignificantly while the removal efficiency of toluene dropped significantly from the perfect elimination. Moreover, the reflector film did not affect the performance of photocatalytic reactor system (2) at all. Therefore the removal of ethanol, hydrogen sulfide and toluene by photocatalytic reactor system (2) was mainly attributed to hydrophobic adsorption of its nonwoven filter media and its extent of photocatalytic removal turned out to be negligible, compared to that of photocatalytic reactor system (1).
[References]
  1. Lasa HD, Serrano B, Salaices M, Photocatalytic Reaction Engineering, Springer, London, 17, 2005
  2. Jacoby WA, Blake DM, Noble RD, Koval CA, J. Catal., 157(1), 87, 1995
  3. Zhao J, Yang X, Building and Environment., 38, 645, 2003
  4. Raupp GB, Alexiadis A, Hossain MM, Changrani R, Catal. Today, 69(1-4), 41, 2001
  5. Mills A, Lee SK, J. Photochem. Photobiol. A-Chem., 152, 233, 2002
  6. Xie C, Xu ZL, Yang QJ, Li N, Zhao DF, Wang DB, Du YG, J. Mol. Catal. A-Chem., 217(1-2), 193, 2004
  7. Mendez-Roman R, Cardona-Martinez N, Catal. Today, 40(4), 353, 1998
  8. Obuchi E, Sakamoto T, Nakano K, Shiraishi F, Chem. Eng. Sci., 54(10), 1525, 1999
  9. Ge H, Chen GW, Yuan Q, Li HQ, Catal. Today, 110(1-2), 171, 2005
  10. Keller N, Barraud E, Bosc F, Edwards D, Keller V, Appl. Catal. B: Environ., 70(1-4), 423, 2007
  11. Kang M, Choung SJ, Park JY, Catal. Today, 87(1-4), 87, 2003
  12. Keller V, Bernhardt P, Garin F, J. Catal., 215(1), 129, 2003
  13. Zuo GM, Cheng ZX, Chen H, Li GW, Miao T, J. Hazard. Mater., 128(2-3), 158, 2006
  14. Van Gerven T, Mul G, Moulijn J, Stankiewicz A, Chem. Eng. Process., 46(9), 781, 2007
  15. Larson SA, Widegren JA, Falconer JL, J. Catal., 157(2), 611, 1995
  16. Esterkin CR, Negro AC, Alfano OM, Cassano AE, AIChE J., 51(8), 2298, 2005
  17. Park OH, Na HY, Environ. Technol., 29, 1001, 2008
  18. Salvad-Estivill I, Hargreaves DM, Puma GL, Environ. Sci. Technol., 41, 2028, 2007
  19. Mohseni M, Taghipour F, Chem. Eng. Sci., 59(7), 1601, 2004
  20. Obee TN, Environ. Sci. Technol., 30, 3578, 1996
  21. Dibble LA, Raupp GB, Environ. Sci. Technol., 26, 492, 1992
  22. Zhang M, An T, Fu J, Sheng G, Wang X, Hu X, Ding X, Chemosphere., 64, 423, 2006
  23. Hossain MM, Raupp GB, Hay SO, Obee TN, AIChE J., 45(6), 1309, 1999
  24. Taranto J, Frochot D, Pichat P, Sep. Purif. Technol., 67(2), 187, 2009
  25. Choi W, Ko JY, Park H, Chung JS, Appl. Catal. B: Environ., 31(3), 209, 2001
  26. Denny F, Scott J, Peng GD, Amal R, Chem. Eng. Sci., 65(2), 882, 2010
  27. Peill NJ, Hoffmann MR, Environ. Sci. Technol., 29, 2974, 1995
  28. Devahasdin S, Fan C, Li K, Chen DH, J. Photochem. Photobiol. A-Chem., 156, 161, 2003
  29. Lee EJ, Park H, Lim KH, Korean Chem. Eng. Res., 50(6), 945, 2012
  30. Lee EJ, Lim KH, Korean Chem. Eng. Res., 50(6), 952, 2012
  31. Lim KH, Park SW, Lee EJ, Hong SH, Korean J. Chem. Eng., 22(1), 70, 2005