Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.51, No.1, 10-24, 2013
공정개발을 위한 다규모 모사에서의 연구현황
State-of-arts in Multiscale Simulation for Process Development
본 논문은 과학 및 공학에서 폭넓게 연구되고 있는 다규모 모사(multiscale simulation; MSS)에 대하여 간단하게 그 현황을 살펴본 후, 이러한 MSS를 공정개발에 효과적으로 적용하기 위하여 공정개발을 위한 PD-MSS (MSS for process development)를 제시한다. 4단계로 제시된 PD-MSS는 PLS(공정수준모사), FLS(유체수준모사), mFLS(미세유체수준모사), 그리고 MLS(분자수준모사) 로 구성된다. 각 규모의 특징과 주요 기법들, 그리고 이들 4개 규모 간 연관성을 설명한다. PD-MSS의 예로서 흡수탑, 유동층 반응기, 그리고 흡착공정의 모사가 소개된다. 성공적인 다규모 모사(MSS)를 위하여 다규모적 화학공학 문제들에 대한 이해, 각 규모 및 규모간 자연현상을 표현할 수 있는 모델 개발, 수학적 모델을 전산상에서 구현할 수 있도록 하는 소프트웨어 개발, 그리고 계산을 수행하는 하드웨어에서의 조화로운 발전이 필요하다. 다규모 모사는 모사결과의 정확도(accuracy), 컴퓨터의 계산능력(computation capacity), 그리고 효율성 (efficiency)을 제한 조건으로 주어진 문제에 접근해야 할 것이다. 거시적 규모와 미시적 규모는 상대적으로 잘 정리되어 있지만, 이들 사이인 중간규모(mesoscale) 에서의 모델은 병목현상을 보이고 있다. 따라서 물리적 현상을 신뢰성 있고, 정확하게 예측하기 위하여 중간규모에 대한 많은 연구가 요구된다. 시작단계에 불과한 PD-MSS는 공정개발에 있어서 시간과 비용을 절감할 수 있는 지속 가능한 기술로서 자리잡게 될 것이다.
The state-of-arts of multiscale simulation (MSS) in science and engineering is briefly presented and MSS for process development (PD-MSS) is proposed to effectively apply the MSS to the process development. The four-level PD-MSS is composed of PLS (process-level simulation), FLS (fluid-level simulation), mFLS (microfluid-level simulation) and MLS (molecular-level simulation). Characteristics and methods of each level, as well as connectivity between the four levels are described. For example in PD-MSS, absorption column, fluidized-bed reactor, and adsorption process are introduced. For successful MSS, it is necessary to understand the multiscale nature in chemical engineering problems, to develop models representing physical phenomena at each scale and between scales, to develop softwares implementing mathematical models on computer, and to have strong computing facilities. MSS should be performed within acceptable accuracy of simulation results, available computation capacity, and reasonable efficiency of calculation. Macroscopic and microscopic scale simulations have been developed relatively well but mesoscale simulation shows a bottleneck in MSS. Therefore, advances on mesoscale models and simulation tools are required to accurately and reliably predict physical phenomena. PD-MSS will find its way into a sustainable technology being able to shorten the duration and to reduce the cost for process development.
[References]
  1. Braatz RD, “Multiscale Simulation in Science and Engineering," AIChE annual meeting, November 8-13, Nashville, TN, USA, 2009
  2. E, W., Principles of Multiscale Modeling, 1st ed., Cambridge University Press, New York, NY, 2011
  3. Jaworski Z, Zakrzewska B, Comput. Chem. Eng., 35(3), 434, 2011
  4. Fermeglia M, Pricl S, Comput. Chem. Eng., 33(10), 1701, 2009
  5. Delgado-Buscalioni R, Coveney PV, Riley GD, Ford RW, Phil. Trans. R.Soc. A., 363(1833), 1975, 2005
  6. Raimondeau S, Vlachos DG, Chem. Eng. J., 90(1-2), 3, 2002
  7. Kim W, Yun C, Jung KT, Park S, Kim SH, Comput.Chem. Eng., 39, 96, 2012
  8. Ideker T, Galitski T, Hood L, Annu. Rev. Genomics Hum. Genet., 2, 343, 2001
  9. Vlachos DG, in Guy BM (Ed.), A review of multiscale analysis:examples from systems biology, materials engineering, and other fluid-surface interacting systems, Academic Press, 1, 2005
  10. Vlachos DG, AIChE J., 58(5), 1314, 2012
  11. Son HJ, Lim YI, Yoo JS, Korean Chem. Eng. Res., 46(6), 1087, 2008
  12. Lee U, Kim K, Oh M, Korean Chem. Eng. Res., 45(6), 582, 2007
  13. Braatz RD, Alkire RC, Rusli E, Drews TO, Chem. Eng. Sci., 59(22-23), 5623, 2004
  14. Steinhauser MO, Computational Multiscale Modeling of Solids and Fluids, 1st ed., Springer, Berlin, Germany, 2008
  15. Nguyen TDB, “Multiscale Simulation Approach to Process Development: Computational Fluid Dynamics (CFD) and Process Modeling,” Ph.D. Dissertation, Hankyong National University, Anseong, Korea, 2011
  16. ASPEN Technology, “ASPEN Plus,” http://www.aspentech.com/.
  17. PSE-Enterprise, “gProms,” http://www.psenterprise.com/gproms/.
  18. Ge W, Wang W, Yang N, Li J, Kwauk M, et al., Chem. Eng. Sci., 66(19), 4426, 2011
  19. Lim YI, “ESCAPE 12 (12th European Symposium on Computer-Aided Process Engineering),” KOSEN conference report, CR02-36, 2002
  20. Perkins J, Comput. Chem. Eng., 26(2), 283, 2002
  21. Stephanopoulos G, Reklaitis GV, Chem. Eng. Sci., 66(19), 4272, 2011
  22. Chen JH, Linstead E, Swamidass SJ, Wang D, Baldi P, Bioinformatics., 23(17), 2348, 2007
  23. NIST, “NIST Chemistry WebBook,” http://webbook.nist.gov/chemistry/.
  24. ChERIC, “KDB (Korea thermodynamial properties data bank),” http://www.cheric.org/.
  25. Gani R, Hytoft G, Jaksland C, Jensen AK, Comput. Chem. Eng., 21(10), 1135, 1997
  26. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, 2nd ed., John Wiley & Sons, New York, NY, 2007
  27. ANSYS, “ANSYS Fluent User’s Guide,” ANSYS, Inc., Canonsburg, Pennsylvania, USA, 2012
  28. Gidaspow D, Multiphase flow and fluidization: Continuum and kinetic theory description, 1st ed., Academic Press, 1994
  29. Gidaspow D, Jung JW, Singh RK, Powder Technol., 148(2-3), 123, 2004
  30. Nguyen TDB, Seo MW, Lim YI, Song BH, Kim SD, Comput. Chem. Eng., 36, 48, 2012
  31. Geng YM, Che DF, Chem. Eng. Sci., 66(2), 207, 2011
  32. Bertrand F, Leclaire LA, Levecque G, Chem. Eng. Sci., 60(8-9), 2517, 2005
  33. Andrews MJ, Orourke PJ, Int. J. Multiph. Flow, 22(2), 379, 1996
  34. Snider DM, Clark SM, O'Rourke PJ, Chem. Eng. Sci., 66(6), 1285, 2011
  35. Chen S, Doolen GD, Annu. Rev. Fluid Mech., 30(1), 329, 1998
  36. Begum R, Basit MA, Europ. J. Sci. Res., 22(2), 216, 2008
  37. Nourgaliev RR, Dinh TN, Theofanous TG, Joseph D, Int. J. Multiphase Flow., 29(1), 117, 2003
  38. Verma N, Salem K, Mewes D, Chem. Eng. Sci., 62(14), 3685, 2007
  39. Aidun CK, Clausen JR, Annu. Rev. Fluid Mech., 42(1), 439, 2010
  40. Succi S, Filippova O, Smith G, Kaxiras E, Comput. Sci. Eng., 3(6), 26, 2001
  41. Ungerer P, Nieto-Draghi C, Rousseau B, Ahunbay G, Lachet V, J. Mol. Liq., 134(1-3), 71, 2007
  42. Arya G, Chang HC, Maginn EJ, J. Chem. Phys., 115(17), 8112, 2001
  43. Sun H, J. Phys. Chem. B, 102(38), 7338, 1998
  44. Lim YI, Bhatia SK, Nguyen TX, Nicholson D, J. Membr. Sci., 355(1-2), 186, 2010
  45. Lim YI, Bhatia SK, J. Membr. Sci., 369(1-2), 319, 2011
  46. Bezzo F, Macchietto S, Pantelides CC, Comput. Chem. Eng., 24(2-7), 653, 2000
  47. Bezzo F, Macchietto S, Pantelides CC, Comput. Chem. Eng., 28(4), 501, 2004
  48. Balaji S, Du J, White CM, Ydstie BE, Powder Technol., 199(1), 23, 2010
  49. Mota JPB, Esteves IAAC, Rostam-Abadi M, Comput. Chem. Eng., 28(11), 2421, 2004
  50. O’Connell ST, Thompson PA, Phys. Rev. E., 52(6), R5792, 1995
  51. Yasuda S, Yamamoto R, Phys. Fluids., 20, 113101, 2008
  52. Son HJ, “Adsorption Isotherms and Diffusivity Predictions on Adsorbent Using Molecular Simulation,” MS thesis, Hankyong National University, Anseong, Korea, 2009
  53. Son HJ, Lim YI, Chin. J. Chem. Eng., 16(1), 108, 2008
  54. Wang FY, Zhu ZH, Massarotto P, Rudolph V, AIChE J., 58(2), 364, 2012
  55. Raynal L, Royon-Lebeaud A, Chem. Eng. Sci., 62(24), 7196, 2007
  56. Guiochon G, J. Chromatogr.A., 965(1-2), 129, 2002
  57. Rajendran A, Paredes G, Mazzotti M, J.Chromatogr. A., 1216(4), 709, 2009
  58. Lim YI, Lee J, Bhatia SK, Lim YS, Han C, Ind. Eng. Chem. Res., 49(7), 3316, 2010
  59. UOP, “Parex: Aromatics,” http://www.uop.com.
  60. Pais LS, Loureiro JM, Rodrigues AE, AIChE J., 44(3), 561, 1998
  61. Lim YI, Jorgensen SB, Ind. Eng. Chem. Res., 46(11), 3684, 2007
  62. Sutanto PS, Lim YI, Lee J, Sep. Purif. Technol., 96, 168, 2012
  63. Bentley J, Kawajiri Y, AlChE J., DOI: 10.1002/aic.13856, 2012
  64. Coasne B, Fourkas JT, J. Phys. Chem. C., 115(31), 15471, 2011
  65. Lim Y, Lee A, Korean Chem. Eng. Res., 45(1), 1, 2007
  66. Lim YI, Chem. Eng. Commun., 195(8), 1011, 2008
  67. Ernest MV, Whitley RD, Ma ZD, Wang NH, Ind. Eng. Chem. Res., 36(1), 212, 1997
  68. Verma N, Mewes D, Comput.Math. Appl., 58(5), 1003, 2009
  69. Li J, “Real Time Simulation of Chemical Processes: Dream or reality,” ECCE (European conference on chemical engineering), September 25-29, Berlin, Germany, 2011