Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.6, 1086-1092, 2012
CO2분위기하에서 저급석탄 촉매가스화 반응 특성 연구
Kinetic Studies of the Catalytic Low Rank Coal Gasification under CO2 Atmosphere
본 촉매가스화 실험에서 촉매로서 가치가 있는 천연광물과 순수촉매를 사용하여 저급석탄의 CO2분위기하 활성화에너지 및 생성된 합성가스의 성분을 분석하였다. 먼저 공업 분석과 원소 분석을 통해 6가지 저급석탄의 회분과 황 함유량을 측정하였다. 그 후 Thermogravimetric Analyzer (TGA)를 통해 저급석탄 열분해반응 특성을 고려하여 실험에 가장 적합한 저급석탄을 선정하였다. 선정된 삼화 저급석탄은 촉매와 섞어 CO2분위기하 TGA실험을 진행하였으며, 결과를 토대로 Kissinger 방법을 이용한 활성화 에너지를 구하였다. 또한 shrinking core model을 이용해 활성화 에너지를 구하여 Kissinger 방법과 비교하였다. 그리고 반응기에서 이산화탄소 분위기하 생성된 합성가스는 Gas Chromatography (GC)를 이용하여 분석하였다. 가스를 분석한 결과 수소의 생성량은 K2CO3를 촉매로 사용하였을 경우 가장 크게 나타났으며, 앞서 구한 활성화 에너지 결과와 일치하는 경향을 나타내었다.
In this study, kinetic studies and analysis of the produced syngas were conducted for low rank coal gasification under CO2 atmosphere. 6 coals were analyzed to measure amount of sulfur and ash by proximate and ultimate analyses. And then they were analyzed to select suitable sample by using Thermogravimetric analyzer (TGA). Selected coal sample Samhwa was mixed with catalysts. Mixed samples with catalysts were used to get activation energy under CO2 atmosphere by using Kissinger’s method and shrinking core model (SCM). Also, analysis of produced syngas was performed by Gas Chromatography (GC). In this experiment, activation of the K2CO3 was the best performance, and result of the analysis of the syngas showed similar trend with result of the activation energy.
[References]
  1. Sung DW, LG business insight., 952, 22, 2007
  2. Yun YS, New & Renewable Energy Journal., “The Status of Coal Gafisfication Technology,”, 55, 2005
  3. Song BH, Kang SK, Kim SD, Korean J. Chem. Eng., 6(30), 749, 1992
  4. Ochoa J, Cassanello MC, Bonelli PR, Cukierman AL, Fuel Process. Technol., 74(3), 161, 2001
  5. Sun ZQ, Wu JH, Zhang DK, Energy Fuels, 22(4), 2160, 2008
  6. Korea Resource Corporation, “State of mineral reserves,”, 20, 2009
  7. Kissinger HE, Anal. Chem., 29, 1702, 1957
  8. Szekely J, Evans JW, Chem. Eng. Sci., 25, 1091, 1970
  9. McKee DW, Carbon., 20, 62, 1982
  10. Sams DA, Talverdian T, Shadman F, Fuel., 64(9), 1208, 1985
  11. Park ST, Choi YT, Sohn JM, Appl. Chem. Eng., 22(3), 312, 2011
  12. Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12, 2011
  13. Wang J, Yao YH, Cao JQ, Jiang MQ, Fuel, 89(2), 310, 2010
  14. Sharma A, Takanohashi T, Morishita K, Takarada T, Saito I, Fuel, 87(4-5), 491, 2008
  15. Sharma A, Takanohashi T, Saito I, Fuel, 87(12), 2686, 2008
  16. Jaffri GER, Zhang JY, J. Fuel Chem. Technol., 36(4), 406, 2008
  17. Meng L, Wang M, Yang H, Hongyan Y, Chang L, Int. J. Mining Sci. and Technol., 21, 587, 2011
  18. Wang J, Sakanishi K, Saito I, Takarada T, Morishita K, Energy Fuels, 19(5), 2114, 2005