Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.6, 1027-1033, 2012
TSMBC(Thermal Simulated Moving Bed Concentrator)를 이용한 페놀 농축
Phenol Concentration using Thermal Simulated Moving Bed Concentrator
일반적인 SMB 공정은 여러 개의 크로마토그래피 컬럼을 갖는 4개의 구역으로 구성되어 있다. SMB는 회분식 크로마토그래피와는 달리 연속적으로 이성분계 물질 분리가 가능한 것이 가장 큰 장점이다. SMB 공정을 이용하여 목적물질의 높은 생산성과 높은 순도의 물질을 얻어낼 수 있다. 이러한 SMB의 특징을 더욱 부각시키려는 연구들이 현재 진행되고 있다. 본 연구에서는 기존 SMB 공정에 온도의 변화를 추가한 Thermal Simulated Moving Bed Concentrator (TSMBC) 공정의 모사를 연구하였다. TSMBC의 장점으로는 온도의 변화를 통하여 등온 흡착식의 조작을 가할 수 있으며, 목적 물질에 따른 적용 분야가 다양하다는 것이다. 본 연구에서는 환경 친화적 공정으로 TSMBC의 적용 가능성을 시험하기 위해서 페놀 폐수로부터 순수한 용매인 물을 얻어내고 용질인 페놀은 농축시키는 모사 과정을 연구하였다. 고정상과 목적물질인 DOWEX 1X4와 페놀을 선정하고 고정상에 대한 페놀의 등온 흡착식을 측정하였다. 모사 과정에서는 총 세 가지 종류의 컬럼을 사용하였고 주입 시료 대비 2.29배, 2.28배, 그리고 1.31배의 목적 물질 농축을 확인할 수 있었다. 그러나 solvent port에서 용질의 배출도 발견되어 DOWEX 1X4 고정상이 상온에서 갖는 페놀의 흡착식에 대한 한계점을 확인하였다.
Conventional SMB process is operated using 4-zone having several chromatography columns in each zone. Unlike batch chromatography, SMB process can continuously separate binary materials. Both high productivity and purity are obtainable by using SMB process. In this study, the simulation on Thermal Simulated Moving Bed Concentrator (TSMBC) which is a SMB process with thermal swing adsorption was carried out. The advantage of TSMBC is that adsorption isotherm can be easily controlled by thermal wave or direct heating. Recovery of pure water and concentration of phenol was studied in simulation. To verify environmental-friendly potential of TSMBC, DOWEX 1X4 was chosen as an adsorbent and phenol was selected as a target material. When 3 columns were used in this study, concentration of phenol is 2.29, 2.28 and 1.31 times higher than injected sample. However, a contamination of phenol in solvent port was found, probably due to the restriction of adsorption isotherm of phenol on DOWEX 1X4.
[References]
  1. Broughton BD, Chem.Eng. Prog., 64(1), 60, 1968
  2. Broughton DB, Neuzil RW, Pharis JM, Brearley CS, Chem. Eng.Prog., 66(1), 70, 1970
  3. Ching CB, Chu KH, Hidajat K, Ruthven DM, Chem. Eng. Sci., 48(7), 1343, 1993
  4. Pais LS, Loureiro JM, Rodrigues AE, Chem. Eng. Sci., 52(2), 245, 1997
  5. Han SK, Yeo MS, Lee JK, Park TJ, Koo YM, Row KH, HWAHAK KONGHAK, 41(6), 728, 2003
  6. Zoltan M, Melinda N, Antal A, Laszlo H, Janos A, Istvan P, Tibor S, J. Chromatogr. A., 1075, 77, 2005
  7. Xie Y, Wu DJ, Ma ZD, Wang NHL, Ind. Eng. Chem. Res., 39(6), 1993, 2000
  8. J. Food Eng., Ester Junko Tomotani and Michele Vitolo, “Production of High-fructose Syrup Using Immobilized Invertase in a Membtane Reactor,", 80(2), 662, 2007
  9. Zhang Z, Mazzotti M, Morbidelli M, J. Chromatogr. A., 1006(1-2), 87, 2003
  10. Long NVD, Lee JW, Le TH, Kim JI, Koo KM, Korean J. Chem. Eng., 28(4), 1110, 2011
  11. Abel S, Mazzotti M, Morbidelli M, J.Chromatogr. A., 944(1-2), 23, 2002
  12. Gottschlich N, Kasche V, J. Chromatogr. A., 765(2), 201, 1997
  13. Juza M, Mazzotti M, Morbidelli M, Trends Biotechnol., 18(3), 108, 2000
  14. Kim JK, Abunsser N, Wankat PC, Stawarz A, Koo YM, Adsorption., 11(1), 579, 2005
  15. Lee JW, Wankat PC, Chem. Eng. J., 166(2), 511, 2011
  16. Wilhelm RH, Rice AW, Bendelius AR, Ind. Eng.Chem. Fundam., 5(1), 141, 1966
  17. Wilhelm RH, Sweed NH, Science., 159(3814), 522, 1968
  18. Simon G, Grevillot G, Hanak L, Szanya T, Marton G, Chem. Eng. J., 70(1), 71, 1998
  19. Davesac RR, Pinto LT, da Silva FA, Ferreira LM, Rodrigues AE, Chem. Eng. J., 76(2), 115, 2000
  20. Ozkaya B, J. Hazard. Mater., 129(1-3), 158, 2006
  21. Kim H, Gritti F, Guiochon G, J. Chromatogr. A., 1049(1-2), 25, 2004
  22. Ayar A, Gursal S, Gurten AA, Gezici O, Desalination, 219(1-3), 160, 2008