Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.50, No.6, 1015-1020, 2012
열천칭과 유동층반응기에서 석탄과 Petroleum Coke의 수증기 가스화반응
Steam Gasification of Coal and Petroleum Coke in a Thermobalance and a Fluidized Bed Reactor
석탄 및 pet coke (petroleum coke)는 그 이용이 제한적이지만 공급이 풍부한 에너지원이므로, 가스화공정에 적용하여 고급연료인 수소나 액체연료를 생산할 수 있다. 본 연구에서는 열천칭반응기와 실험실규모의 유동층반응기(내경 0.02 m, 높이 0.6 m)에서 갈탄, 무연탄, pet coke의 수증기 가스화 반응특성을 조사하였다. 가스화 온도 600~900 ℃, 수증기 분압 0.15~0.95 atm 및 수증기/연료 비의 조업변수가 가스화반응속도 및 생성가스의 발열량에 미치는 영향을 조사하였다. 기체-고체 반응모델로서 modified volumetric reaction model을 적용하여 가스화반응의 거동을 묘사하고 kinetic 인자들을 도출하였다. 가스화 반응온도가 높을수록 생성가스 중의 수소농도와 가스의 발열량은 증가하였다. 생성가스 발열량은 무연탄 > 갈탄 > pet coke의 순으로 높게 나타났는데, 반응온도 900 ℃, 수증기분압 95%의 조건에서 10.0 > 6.9 > 5.7 MJ/m3로 각각 얻어졌다. 본 연구를 통하여 갈탄과 pet coke에 대해 가스화공정의 잠재적인 연료로서의 가능성을 확인하였다.
Lignite of low rank coal and petroleum coke of high sulfur content can be high potential energy sources for coal gasification process because of their plentiful supply. The steam gasification of lignite, anthracite, and pet coke has been carried out in both an atmospheric thermobalance reactor and a lab-scale fludized bed reactor (0.02 m i.d. × 0.6 mheight). The effects of gasification temperature (600~900 ℃) and partial pressure of steam (0.15~0.95 atm) on the gasification rate and on the heating value of product gas have been investigated. The modified volumetric reaction model was applied to the experimental data to describe the behavior of carbon conversion, and to evaluate kinetic parameters of char gasification. The results shows that higher temperature bring more hydrogen in the product syngas, and thus increased gas heating value. The feed rate of steam is needed to be optimized because an excess steam input would lower the gasification temperature which results in a degradation of fuel quality. The rank of calorific value of the product gas was anthracite > lignite > pet coke. Their obtained calorific value at 900 ℃ with 95% steam feed were 10.0 > 6.9 > 5.7 MJ/m3. This study indicates that lignite and pet coke has a potential in fuel gas production.
[References]
  1. Smouse S, “Asia Pacific Partnership on Clean Development and Climate Action Plan,” APP CFE Task Force Meeting, July, Beijing, 2007
  2. Lee S, Kim S, Korean Chem. Eng. Res., 46(3), 443, 2008
  3. McKee D, Fuel., 62, 170, 1983
  4. Lee J, Lee S, Korean Ind. Chem. News, 11(1), 26, 2008
  5. Song B, Zhu X, Korean Chem. Eng. Res., 50(1), 76, 2012
  6. Wen CY, Ind. Eng. Chem., 60, 34, 1968
  7. Ishida M, Wen CY, AIChE J., 14, 175, 1978
  8. Kasaoka S, Sakata Y, Tong C, Int. Chem. Eng., 25(1), 160, 1985
  9. Kayembe N, Pulsifer AH, Fuel., 55, 211, 1976