Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.4, 512-517, 2009
Drop Tube Furnace를 이용한 순산소연소 배가스 로내탈황에 관한 연구
Study on the In-Furnace Desulfurization for Oxy-Fuel Combustion Flue Gases Using Drop Tube Furnace
순산소 연소에서 SO2 농도는 배가스의 재순환으로 인해 기존의 공기연소에 비해 3배 이상 높게 나타나고, CO2 농도와 SO2 농도가 높기 때문에 탈황현상이 기존의 공기 연소와는 다르게 나타난다. 본 연구에서는 순산소 연소조건에서 로내탈황 특성을 알아보기 위해 Drop Tube Furnace(DTF)를 이용하여, 반응온도, 유입 SO2 농도 그리고 Ca/S 비 등 의 운전변수에 따른 SO2 제거효율을 측정하였으며 수분의 영향에 대해서도 알아보았다. 반응온도, 유입 SO2 농도 그리고 Ca/S 비가 증가함에 따라 SO2 제거효율은 증가하였고 유입가스 내 수분이 존재할 경우 SO2 제거효율은 약 4~6% 증가하는 것으로 나타났다.
SO2 concentrations in oxy-fuel combustion flue gases increases about three times as high as that of conventional air combustion system owing to the flue gas recirculation for the control of combustion temperature. So the desulfurization reaction is different from that of the conventional air combustion system due to exceptionally high CO2 and SO2 concentration. In this study, drop tube furnace(DTF) system was used to investigate the desulfurization characteristics of limestone in oxy-fuel combustion furnace. The experiments were performed under O2/CO2 atmosphere to examine the effect of operating variables such as reaction temperatures, Ca/S ratios and inlet SO2 concentrations on the SO2 removal efficiencies. SO2 removal efficiency increased with reaction temperature, Ca/S ratio and inlet SO2 concentration. And the addition of water vapor resulted in about 4~6% of increase in SO2 removal efficiency.
[References]
  1. Buhre BJP, Elliott LK, Sheng CD, Gupta RP, Wall TF, Prog. Energy Combust. Sci., 31, 283, 2005
  2. Wall TF, Proc. Combust. Inst., 31, 31, 2007
  3. Ahn KY, Lee SM, Lee YD, Proc. SAREK 2006 Winter Annual Conference, 370, 2006
  4. Kim HJ, Choi WY, Bae SH, Shin HD, KSMEB, 32, 729, 2008
  5. Chen JC, Liu ZS, Huang JS, J. Hazard. Mater., 142(1-2), 266, 2007
  6. Liu H, Zailani R, Gibbs BM, Fuel, 84, 833, 2005
  7. Andersson K, Johnsson F, Energy Conv. Manag., 47(18-19), 3487, 2006
  8. Kim JS, NICE, 25, 450, 2007
  9. Kim HK, Kim YM, Lee SM, Ahn KY, Proc. Combust. Inst., 31, 3377, 2007
  10. Simpson AP, Simon AJ, Energy Conv. Manag., 48(11), 3034, 2007
  11. Tan Y, Croiset E, Douglas MA, Thambimuthu KV, Fuel, 85, 507, 2006
  12. Yoo KS, Song BH, Kim SD, Kim KT, J. Korea Solid Wastes Engineering Society, 14, 611, 1997
  13. Cheng J, Zhou J, Liu L, Zhou Z, Huang Z, Cao X, Zhao Z, Cen K, Prog. Energy Combust. Sci., 29, 381, 2003
  14. Chen CM, Zhao CS, Ind. Eng. Chem. Res., 45(14), 5078, 2006
  15. Liu H, Katagiri S, Okazaki K, Energy Fuels, 15, 403, 2000
  16. Ye Z, Wang W, Zhong Q, Bjerle I, Fuel, 74, 743, 1995
  17. Cho KC, Lee SI, J. Korean Society of Environmental Administration, 9, 257, 2003
  18. Han KH, Ryu HJ, Shun DW, Yi CK, Ryu JI, Jin GT, 24th KOSCO Symposium, 237, 2002
  19. Han KH, Song YS, Ryu JI, Son JE, Jin GT, HWAHAK KONGHAK, 41(1), 86, 2003
  20. Hu G, Dam-Johansen K, Wedel S, Hansen JP, AIChE J., 53(4), 948, 2007
  21. Hu G, Dam-Johansen K, Wedel S, Peter Hansen J, Prog. Energy Combust. Sci., 32, 386, 2006
  22. Jin DS, Deshwal BR, Park YS, Lee HK, J. Hazard. Mater., 135(1-3), 412, 2006