Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.47, No.4, 441-445, 2009
PEMFC 고분자 막의 전기화학적 열화에 미치는 온도의 영향
Effect of Temperature on Electrochemical Degradation of Membrane in PEMFC
고분자전해질 막의 전기화학적 열화에 미치는 온도의 영향에 대해 연구하였다. 가속 열화 조건(OCV, anode 무가습, cathode 65% RH)에서 셀 온도를 변화시켜 144시간 운전한 후 셀 성능은 12에서 35%까지 감소하였다. 이러한 성능 감소는 FER(Fluoride Emission Rate) 측정에서 알 수 있듯이 과산화수소 혹은 산소라디칼(·OH, HO2·)의 공격에 의한 막의 열화에 따른 것으로 라디칼 형성을 위한 가스 crossover의 증가를 가져왔다. 전극에서의 라디칼 생성은 ESR로 확인하였다. 고분자막 열화의 온도 의존성을 나타내는 Arrhenius plot에 얻어진 활성화 에너지 값은 66.2 kJ/mol이었다. 셀 작동온도 증가는 라디칼 형성속도와 라디칼이 막을 공격하는 반응 속도뿐 아니라 가스 crossover 속도도 증가시켜 막 열화를 가속화시켰다.
Effect of temperature on membrane degradation in PEMFCs was studied. After cell operation at different temperatures(60~90 ℃) under accelerating degradation conditions(OCV, anode dry, cathode RH 65%) for 144 h, cell performance decreased from 12 to 35%. The results of FER in effluent water showed that this decrease in cell performance was caused by membrane degradation by the attack of H2O2 or oxygen radicals(·OH, HO2·) and that resulted in increase in gas crossover for radical formation. Radical formation on the electrode was confirmed by ESR. Activation energy of 66.2 kJ/mol was obtained by Arrhenius plot used to analyze the effect of temperature on membrane degradation. Increase of cell temperature enhanced gas crossover rate, radical formation rate and membrane degradation rate.
[References]
  1. Williams MC, Strakey JP, Surdoval WA, J. Power Sources, 143(1-2), 191, 2005
  2. Perry ML, Fuller TF, J. Electrochem. Soc., 149(7), S59, 2002
  3. Wilkinson DP, St-Pierre J, in: Vielstich W, Gasteiger HA, Lamm A (Eds.). Handbook of Fuel Cells: Fundamentals Technology and Applications, vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612, 2003
  4. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S, J. Electrochem. Soc., 140, 2872, 1993
  5. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127(1-2), 127, 2004
  6. Luo Z, Li D, Tang H, Pan M, Ruan R, Int. J. Hydrogen Energy, 31, 1838, 2006
  7. Pozio A, Silva RF, De Francesco M, Giorgi L, Electrochim. Acta, 48(11), 1543, 2003
  8. Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL, J. Electrochem. Soc., 152(1), A104, 2005
  9. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41, 2004
  10. Collier A, Wang H, Yaun X, Zhang J, Wilison DP, Int. J. Hydrogen Energy, 31, 1838, 2006
  11. Laconti AB, Hamdan M, MacDonald RC, in: Vielstich W, Gasteiger HA, Lamm A (Eds.). Handbook of Fuel Cells: Fundamentals Technology and Applications, vol. 3, Wiley & Sons Ltd., Chichester, England, 647-662, 2003
  12. Yang C, Srinivasan S, Bocarsly AB, Tulyani S, Benziger JB, J. Membr. Sci., 237(1-2), 145, 2004
  13. Wilkie CA, Thomsen JR, Mittleman ML, J. Appl. Polym. Sci., 42, 901, 1991
  14. Surowiec J, Bogoczek R, J. Therm, Anal. Calorim., 33, 1097, 1998
  15. Buchi FN, Gupta B, Haas O, Scherer GG, Electrochim. Acta, 40(3), 345, 1995
  16. Wang H, Capuano GA, J. Electrochem. Soc., 145(3), 780, 1998
  17. Endoh E, Terazono S, Widjaja H, Takimoto Y, Electrochem, Solid-State Lett., 7, 145, 2004
  18. Kim T, Lee J, Lee H, Lim TW, Park K, Korean Chem. Eng. Res., 45(4), 345, 2007
  19. Kim TH, Lee JH, Lee H, Lim TW, Park KP, Trans. of the Korean and New Energy Society, 18, 157, 2007