Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.44, No.5, 505-512, 2006
액체-입자 Swirling 유동층에서 유동입자 흐름 및 열전달 특성
Characteristics of Particle Flow and Heat Transfer in Liquid-Particle Swirling Fluidized Beds
직경이 0.102 m이고 높이가 2.5 m인 액체-입자 swirling(나선)흐름 유동층에서 유동 입자의 흐름 및 열전달 특성을 고찰하였다. 액체유속(UL), 유동 입자의 크기(dp) 그리고 연속상인 액체의 나선 유도흐름 액체량의 비(RS)가 유동층 내 유동입자의 체류량 유동층 내부 열원과 유동층간의 총괄 열전달 계수에 미치는 영향을 검토하였다. 액체-입자 나선흐름 유동층에서 입자 체류량은 입자의 크기와 나선유도흐름 액체량의 비가 증가함에 따라서 증가하였으나, 액체유속의 증가에 따라서는 감소하였다. 유동층 내부에서 나선 유도 흐름 액체량의 비가 0.1~0.3인 경우에 유동 입자의 국부체류량은 유동층 중심부에서 큰 값을 나타내었으나, RS의 값이 0.5일 때는 반경 방향 입자 체류량은 거의 균일한 분포를 보이며, RS의 값이 0.7일 때는 유동층 중심부의 입자 체류량이 상대적으로 감소하는 경향을 나타내었다. 유동층 내부열원과 유동층간의 열전달 특성은 열원 표면과 유동층간의 온도차 요동 자료의 위상공간 투영과 kolmogorov 엔트로피 해석으로 고찰할 수 있었으며, 나선 유도 흐름 액체량의 비(RS)가 0.1에서 0.5까지 증가할수록 온도차 요동 자료의 위상공간 투영은 점점 안정되고 규칙성이 증대되는 상태를 나타내고, kolmogorov 엔트로피 값은 감소하는 경향을 나타내었다. 열원 표면과 유동층간의 온도차 요동 자료의 kolmogorov 엔트로피 값은 액체의 유속이 증가함에 따라 최대값을 나타내었다. 열원과 유동층간의 총괄 열전달 계수는 액체유속, 층공극률, 나선 유도 흐름 액체량의 비가 증가함에 따라서 최대값을 나타내었으며, 유동 입자의 크기가 증가함에 따라 증가하였다. 내부 열원과 유동층간의 총괄 열전달 계수가 최대값을 나타낼 때의 액체의 유속 조건에서 온도차 요동자료의 kolmogorov 엔트로피의 값도 최대값을 나타내었다. 액체-입자 나선흐름 유동층에서 입자 체류량과 열전달 계수를 무차원군의 상관식으로 나타낼 수 있었다.
Characteristics of particle holdup and heat transfer were investigated in a liquid-particle swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of liquid velocity, particle size and swirling liquid ratio(RS) on the particle holdup and immersed heater-to-bed overall heat transfer coefficient were examined. The particle holdup increased with increasing particle size and swirling liquid ratio but decreased with increasing liquid velocity. The local particle holdup was relatively high in the region near the heater when the RS value was 0.1~0.3, but the radial particle holdup was almost uniform when the RS value was 0.5, whereas, when the RS value was 0.7, the local particle holdup was relatively low in the region near the heater. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of RS from 0.1 to 0.5. The Kolmogorov entropy exhibited its maximum value with increasing liquid velocity. The value of overall heat transfer coefficient(h) showed its maximum value with the variation of liquid velocity, bed porosity or swirling liquid ratio, but it increased with increasing particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The particle holdup and overall heat transfer coefficient were well correlated in terms of dimensionless groups of operating variables.