Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.43, No.2, 249-258, 2005
수소/메탄 혼합 기체로부터 수소 분리를 위한 두 탑 PSA 실험과 전산 모사
Experiment and Simulation of 2-bed PSA for Hydrogen Separation from H2/CH4 Gas Mixture
활성탄을 흡착제로 하여 2탑 6단계의 PSA(압력 순환식 흡착) 공정을 통하여 수소/메탄(부피비로 60%/40%)의 이성분 혼합기체에서 수소를 분리하는 연구를 수행하였다. PSA 공정에서 순도 및 회수율에 영향을 미치는 흡착압력, 공급 가스 유량, P/F 비를 변수로 하여 실험과 전산모사를 수행하였다. 본 공정에서 정상 상태는 15 cycle 이후에 도달하는 것을 알 수 있었다. P/F 비와 압력이 증가하고 공급 유량이 감소할 때 수소의 순도가 증가하였고, 반면에 회수율이 감소하는 것을 알 수 있었다. PSA 공정 전산 모사와 실험을 토대로 순도와 회수율이 최대일 때 최적의 PSA 운전 조건을 정하였다. 최적의 운전 조건은 공급가스의 유량이 22 LPM이고, 흡착 압력이 11 atm이며, P/F 비는 0.10으로 나타 났고, 그 결과 수소의 회수율은 75% 이상 얻어졌으며, 순도는 99% 이상의 수소를 얻을 수 있었다. 본 연구에서는 비 등온 비단열 상태를 고려하였으며, LDF(linear driving force) 모델과 LRC(loading ratio correlation) 등온식을 고려하여 실험과 예상치를 비교하였다.
A two-column six-step pressure swing adsorption(PSA) process was to study separation of hydrogen from hydrogen and methane(60vol%/40vol%) binary system onto activated carbon adsorbent. The effects of the feed gas pressure, the feed flowrate and the P/F(purge to feed) ratio on the process performance were evaluated. The cyclic steadystates of PSA process were reached to after 15 cycles. H2 purity increases according as the P/F ratio and pressure increase and the feed flow rate decreases; however, H2 recovery shows an opposite phenomena to the purity. PSA process simulation studied to find optimum operation condition. In the results, 22 LPM feed flowrate, 11 atm adsorption pressure and 0.10 P/F ratio might be optimal values to obtain more than 75% recovery and 99% purity hydrogen. In this study was non-isothermal and non-adiabatic model considering linear driving force(LDF) model and Langmuir-Freundlich adsorption isotherm considered to compare between prediction and experimental data.
[References]
  1. Jang DG, Shin HS, Kim JN, Cho SH, Suh SS, HWAHAK KONGHAK, 37(6), 882, 1999
  2. Park JH, Kim JN, Cho SH, AIChE J., 46(4), 790, 2000
  3. Sircar S, Kurma R, Ind. Eng. Chem. Process Des. Dev., 22(2), 271, 1983
  4. Yang J, Han S, Cho C, Lee H, HWAHAK KONGHAK, 33(1), 56, 1995
  5. Yang J, Cho C, Baek KH, Lee CH, HWAHAK KONGHAK, 35(4), 545, 1997
  6. Yang RT, Gas Separation by Adsorption Processes, Butterworth, Boston, MA, 1987
  7. Ahn H, Lee CH, Seo B, Yang JY, Baek K, Adsorption, 5(4), 419, 1999
  8. Han S, Lee H, HWAHAK KONGHAK, 33(6), 720, 1995
  9. Kunii D, Smith JM, AIChE J., 6(1), 71, 1960
  10. Skarstrom CW, "Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption", U.S. Patent No. 2,944,627, 1960
  11. Peiling C, Yang RT, Ind. Eng. Chem. Fundam., 25(4), 758, 1986
  12. Marsh WD, Hoke RC, Pramuk FS, Skarstrom CW, "Pressure Equalization Depressuring in Heatless Adsorption", U.S. Patent No. 3,142,547, 1964
  13. Doong SJ, Yang RT, AIChE J., 32(3), 397, 1986
  14. Ruthven DM, Farooq S, Knaebel KS, Pressure Swing Adsorption, VCH publishers, New York, 1994
  15. Wakao N, Funazkri T, Chem. Eng. Sci., 33(10), 1375, 1978
  16. Ruthven DM, Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York, 1984
  17. Mitchell JE, Shendalman LH, AICHE Symp. Ser., 69(134), 25, 1973
  18. Chihara K, Suzuki M, J. Chem. Eng. Jpn., 16(1), 53, 1983
  19. Glueckauf E, Trans. Faraday Soc., 51, 1540, 1955
  20. Kim WG, Yang J, Han S, Cho C, Lee CH, Lee H, Korean J. Chem. Eng., 12(5), 503, 1995
  21. Yagi S, Kunii D, AIChE J., 6(1), 97, 1964
  22. Malek A, Farooq S, J. Chem. Eng. Data, 41(1), 25, 1996
  23. Yang RT, Doong SJ, AIChE J., 31(11), 1829, 1985
  24. Choi BY, Lee YW, Lee BK, Choi DK, J. Chem. Eng. Data, 48(3), 603, 2003
  25. Brunauer S, Deming LS, Deming WE, Teller EJ, J. Am. Chem. Soc., 62(7), 1723, 1940
  26. Ross S, Olivier JP, On Physical Adsorption, Wiley, New York, 1964
  27. Yang J, Han S, Cho C, Lee CH, Lee H, Sep. Technol., 5(4), 239, 1995
  28. Lee CH, Yang JY, Ahn HW, AIChE J., 45(3), 535, 1999
  29. Waldron WE, Sircar S, Adsorption, 6(2), 179, 2000