Search / Korean Journal of Chemical Engineering
Korean Chemical Engineering Research,
Vol.42, No.5, 518-523, 2004
Stirred Ball Attrition Mill에 의한 알루미나의 미분쇄에 관한 특성분석
Fine Grinding Characterization of Alumina Ground by a Stirred Ball Attrition Mill
고성능 저압차 촉매를 제조하기 위한 연구의 일환으로 알루미나의 미분쇄 특성을 attrition mill을 이용하여 조사하였다. 분쇄 시간에 따른 입자크기의 변화를 측정하였으며, 이론적인 분쇄 방정식에 적용하여 수학적인 모델링을 한 다음, 분쇄 속도 상수를 예측하였다. 알루미나의 농도가 증가할수록 분쇄효율과 분쇄율 상수는 감소하는 경향을 나타내었다. 수학적인 모델링에 의해 예측된 분쇄율 상수로부터 얻어진 입자크기 분포는 실험에서 얻어진 결과와 거의 일치함을 알 수 있었다. 분쇄하는 동안 슬러리의 pH는 분쇄된 알루미나의 비표면적이 증가하기 때문에 서서히 증가하는 경향을 나타내었다. 마이크론 크기의 알루미나는 stirred-ball attrition mill을 사용하는 분쇄방법에 의해 나노크기의 입자로 제조할 수 있었다.
To develop a high-performance structured catalyst, the fine grinding characteristics of alumina was investigated by a stirred-ball attrition mill. The grinding kinetics approach was successfully applied to the analysis of particle size distributions obtained under various grinding times. Particle size of alumina decreased with increasing grinding time and BET surface area increased with increasing the time. It was found that grinding rate constant decreased with increasing the solid content and media size. The particle size distributions estimated from grinding rate constant were in good agreement with the experimental data. It was found that the pH-value of the product suspension slightly increased due to increasing the specific surface area during the comminution. It was identified that nano-size alumina was produced by means of the stirred-ball attrition mill.
[References]
  1. Moon DJ, Ryu JW, Lee SD, Ahn BS, 2002 Fuel cell seminar, 348, 2002
  2. Moon DJ, Sreekumar K, Lee SD, Lee BG, Kim HS, Appl. Catal. A: Gen., 215(1-2), 1, 2001
  3. Agrafiotis C, Tsetsekou A, Ekonomakou A, J. Mater. Sci. Lett., 18(17), 1421, 1999
  4. Agrafiotis C, Tsetsekou A, J. Mater. Sci., 35(4), 951, 2000
  5. William PA, "High Surface Area Washcoated Substrate and Method for Producing Same", U.S. Patent No. 5,212,130, 1993
  6. Blachou V, Goula D, Philippopoulos C, Ind. Eng. Chem. Res., 31, 364, 1992
  7. Choi HK, Choi WS, Korean J. Chem. Eng., 20(4), 783, 2003
  8. Stehr N, Ind. J. Miner Process., 22, 431, 1988
  9. Zheng J, Harris CC, "Power and Operating Behavior in Stirred Media Mills", Proc. 19th Int. Mineral Processing Congr., Francisco, CA, USA, 1995
  10. Zheng J, Harris CC, Somasundaran P, Powder Technol., 86(2), 171, 1996
  11. Nakajima Y, Tanaka T, Ind. Eng. Chem. Process Des. Dev., 12, 23, 1973
  12. Shinohara K, Golman B, Uchiyama T, Otani M, Powder Technol., 103(3), 292, 1999
  13. Strazisar J, Runovc F, Int. J. Miner. Process., 44, 673, 1996
  14. Tangsathitkulchai C, Austin LG, Powder Technol., 42(3), 287, 1985
  15. Kang DM, Moon DJ, Ryu JW, Ahn BS, Hong SI, Appl. Chem., 7(1), 189, 2003
  16. Moon DJ, Ryu JW, Kang DM, Ahn BS, Lee BG, "POX Reforming Structured Catalyst of Gasoline for Fuel Cell Powered Vehicle Application, and Method for Preparing the Structured Catalyst," Korea Patent 2003-0074937 (2003); in application to U. S. Patent(2004)
  17. Mende S, Stenger F, Peukert W, Schwedes J, Powder Technol., 132(1), 64, 2003