Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.2, 173-178, 2000
라텍스 콜로이드의 여과에 따른 멤브레인 전위의 변화 거동
The Behavior of Membrane Potential Changes During Filtration of Latex Colloids
하전된 채널에서 외부압력에 의해 전해질 용액의 유동이 있으면 전기이중층(electric double layer)내의 이온흐름에 기인한 계면동전기(electrokinetic) 효과로 흐름전위(streaming potential)가 발생된다. 이 경우 Helmholtz-Smoluchowski 관계식에 의해 막표면에서의 제타전위로 정의되는 멤브레인 전위(membrane potential)를 결정할 수 있다. 콜로이드의 막여과에서, 멤브레인 전위는 현탁입자의 농도, 그리고 전해질 농도로 결정되는 용액의 이온화 세기 (ionic strength)와 같은 물리화학적 인자들에 영향을 받는다. 막여과의 진행에 따라 케
The streaming potential generated by the electrokinetic flow effect within electric double layer of harged channel is applied to determine the membrane potential by using the Helmholtz-Smoluchowski equation. It is known that the membrane potential depends on the particle concentration, solution ionic strength and cake layer formed during the progress of filtration. The influence of physicochemical parameters upon the filtration has been examined with an in-situ and simultaneously monitoring of membrane potential as well as permeate flux. As the latex concentration increases, both permeate flux and membrane potential are decreased. Evidently, the growth of cake layer has been more developed with increasing latex concentration, and then both a lower permeate velocity and a higher solution conductivity lead to decrease the membrane potential. With increasing ionic concentration of KCl from 0.1 to 10 mM, the opposite behavior has been observed, where the permeate flux decreases but the membrane potential increases. Note that the increase of ionic concentration provides a denser cake layer due to the shrinkage of Debye length, and the increased membrane potential results from a corresponding zeta potential.
[References]
  1. Nystrom M, Zhu HH, J. Membr. Sci., 131(1-2), 195, 1997
  2. Szymczyk A, Pierre A, Reggiani JC, Pagetti J, J. Membr. Sci., 134(1), 59, 1997
  3. Nabe A, Staude E, Belfort G, J. Membr. Sci., 133(1), 57, 1997
  4. Jimbo T, Higa M, Minoura N, Tanioka A, Macromolecules, 31(4), 1277, 1998
  5. Mockel D, Staude E, Dal-Cin M, Darcovich K, Guiver M, J. Membr. Sci., 145(2), 211, 1998
  6. van de Ven TGM, Colloids Surf. A: Physicochem. Eng. Asp., 138, 207, 1998
  7. Nystrom M, Pihlajamaki A, Ehsani N, J. Membr. Sci., 87(3), 245, 1994
  8. Agerbaek ML, Keiding K, J. Colloid Interface Sci., 169(2), 342, 1995
  9. Lebolay N, Ricard A, J. Colloid Interface Sci., 170(1), 154, 1995
  10. Ricq L, Pierre A, Reggiani JC, Zaragozapiqueras S, Pagetti J, Daufin G, J. Membr. Sci., 114(1), 27, 1996
  11. Kim KJ, Fane AG, Nystrom M, Pihlajamaki A, J. Membr. Sci., 134(2), 199, 1997
  12. Russel WB, Saville DA, Schowalter WR, "Colloidal Dispersions," Cambridge Univ. Press, New York, 1989
  13. Yang SM, Park OO, "Fundamentals of Microstructural Fluid Flow(Daewoo Academic Books Series·Natural Sciences 116)," Minumsa, Seoul, 1997
  14. Hunter RJ, "Zeta Potential in Colloid Science: Principles and Applications," Academic Press, New York, 1981
  15. Levine S, Marriott JR, Neale G, Epstein N, J. Colloid Interface Sci., 52, 136, 1975
  16. Chun MS, Park OO, HWAHAK KONGHAK, 30(2), 200, 1992
  17. Zukoski CF, Saville DA, J. Colloid Interface Sci., 115, 422, 1987
  18. Tuin G, Senders JH, Stein HN, J. Colloid Interface Sci., 179(2), 522, 1996
  19. Chang DJ, Hsu FC, Hwang SJ, J. Membr. Sci., 98(1-2), 97, 1995