Search / Korean Journal of Chemical Engineering
HWAHAK KONGHAK,
Vol.38, No.1, 67-74, 2000
MSMPR 반응기와 쿠에트-테일러 반응기에서 기-액 반응성 탄산칼슘 결정화
Gas-Liquid Reaction Precipitation of Calcium Carbonate in MSMPR and Couette-Taylor Reactors
Rushton형 MSMPR 반응기와 쿠에트-테일러 반응기에서 이산화탄소가 수산화칼슘의 기-액 반응에 의해 생성되는 탄산칼슘 결정화에 대해 체류시간, 교반속도, 계면활성제의 종류와 같은 조업변수가 미치는 영향에 대해 실험적으로 연구하였다. 온도와 농도가 일정한 MSMPR 반응기에서는 계면활성제의 종류가 평균 입자크기에 가장 큰 영향을 미치는 것으로 나타났고, 이를 평균 제타전위로 수치화하였다. 교반속도의 증가에 따른 평균 입자크기는 물질전달 저항의 감소로 인해 증가하였다. 쿠에트-테일러 반응기에서의 와류 흐름의 효과는 기-액 반응성 탄산칼슘 결정화에 대해 독특한 특성을 나타내었다. 쿠에트-테일러 반응기에서는 와류에 의해 균일한 혼합조건을 얻을 수 있었고, 이로 인해 MSMPR 반응기의 경우보다 입자의 크기분포가 매우 균일하게 나타났다.
The effect of the operating variables such as mean residence time, agitational speed and surfactant type, on the precipitation of calcium carbonate was experimentally investigated in MSMPR and Couette-Taylor reactors. The precipitates was produced by the gas-liquid reaction of CO2 gas and Ca(OH)2 aqueous solution. Under-fixed temperature and concentration in MSMPR reactor, it was founded that the surfactant type had the greatest influence on the mean particle size and this effect was represented numerically by the zeta potential. With increasing the impeller speed the mean particle size increased due to decrease of the resistance in mass transfer processes. The vortex flow in Couette-Taylor reactor affected the precipitation of calcium carbonate complicatedly. The homogeneous mixing owing to Taylor vortex in Couette-Taylor reactor led to the more uniform particle size distribution than that in MSMPR reactor.
[References]
  1. Chakraborty D, Agarwal VK, Bhatia SK, Bellare J, Ind. Eng. Chem. Res., 33(9), 2187, 1994
  2. Tai CY, Chen FB, AIChE J., 44(8), 1790, 1998
  3. Reddy MM, Nancollas GH, J. Colloid Interface Sci., 37, 166, 1971
  4. Jones AG, Hostomsky J, Li Z, Chem. Eng. Sci., 47, 3817, 1992
  5. Chakraborty D, Bhatia SK, Ind. Eng. Chem. Res., 35(6), 1995, 1996
  6. Tai CY, Chen PC, Shih SM, AIChE J., 39, 1472, 1993
  7. Tai CY, Chen PC, AIChE J., 41(1), 68, 1995
  8. Franke J, Mersmann A, Chem. Eng. Sci., 50(11), 1737, 1995
  9. Suhara T, Esumim K, Meguro K, Bull. Chem. Soc. Jpn., 56, 2932, 1983
  10. Yagi H, Iwazawa A, Sonobe R, Mateubara T, Kikita H, Ind. Eng. Chem. Fundam., 23, 153, 1984
  11. Chen PC, Tai CY, Lee KC, Chem. Eng. Sci., 52(21-22), 4171, 1997
  12. Juvekar VA, Sharma MM, Chem. Eng. Sci., 28, 825, 1973
  13. Danckwerts PV, "Gas-liquid Reactions," McGraw-Hill, New York, 238, 1970
  14. Astarita G, "Mass Transfer with Chemical Reaction," Elsevier, Amsterdam, 131, 1967
  15. Danckwerts PV, Chem. Eng. Sci., 8, 93, 1958
  16. Becker GE, Larson MA, Chem. Eng. Prog. Symp. Ser., 65, 14, 1969
  17. Pohorecki R, Baldyaga J, Chem. Eng. Sci., 38, 79, 1983
  18. Garside J, Tavare NS, Chem. Eng. Sci., 40, 1485, 1985
  19. Campero RJ, Vigil RD, Chem. Eng. Sci., 52(19), 3303, 1997
  20. Lee SG, Kim MC, Kim WS, Choi CK, HWAHAK KONGHAK, 36(1), 42, 1998
  21. Kataoka K, Doi H, Koai T, Int. J. Heat Mass Transf., 20, 57, 1977
  22. Kataoka K, Takigawa T, AIChE J., 27, 504, 1981
  23. Kataoka K, Ohmura N, Kouzu M, Simamura Y, Okubo M, Chem. Eng. Sci., 50(9), 1409, 1995
  24. Pudjiono PI, Tavore NS, Garside J, Nigam KDP, Chem. Eng. J., 48, 101, 1992
  25. Lee SG, Jung WM, Kim WS, Choi CK, HWAHAK KONGHAK, 36(1), 49, 1998
  26. Karpinski PH, Chem. Eng. Sci., 40, 641, 1985
  27. Kim WS, Tarbell JM, Chem. Eng. Commun., 146, 33, 1996
  28. Sohnel O, Mullin JW, J. Cryst. Growth, 60, 239, 1982
  29. Nielsen AE, Toft JM, J. Cryst. Growth, 67, 278, 1984
  30. Wachi S, Jones AG, Chem. Eng. Sci., 46, 3289, 1991
  31. Ogino T, Suzuki T, Sawada K, J. Cryst. Growth, 100, 159, 1990
  32. Kazmierczak TF, Tomson MB, Nancollas GH, J. Phys. Chem., 86, 103, 1982